Tính giá trị của biểu thức

a) M = x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3 2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y A= (3x-5) (2x+11) - (2x+3) (3x+7) B= (2x+3) (4x2-6x+9) - 2(4x3-1) C= (x-1)3 - (x+1)3+ 6(x+1)(x-1). 3. Tìm min của A, B, C và max của D, E A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6) D= 5 - 8x - x2 E= 4x - x2 +1 4. a. Cho a+b+c = 0. Chứng minh...
Đọc tiếp

1. Rút gọn rồi tính giá trị của biểu thức A= (x-y) (x2 + xy+y2) + 2y3 tại x=2/3 và y=1/3

2. Chứng minh biểu thức sau không phụ thuộc vào biến x, y

A= (3x-5) (2x+11) - (2x+3) (3x+7)

B= (2x+3) (4x2-6x+9) - 2(4x3-1)

C= (x-1)3 - (x+1)3+ 6(x+1)(x-1).

3. Tìm min của A, B, C và max của D, E

A= x2 - 4x + 1 B= 4x2 + 4x + 11 C= (x-1) (x+3) (x+2) (x+6)

D= 5 - 8x - x2 E= 4x - x2 +1

4. a. Cho a+b+c = 0. Chứng minh a3+b3+c3= 3abc

b. Tìm giá trị của a, b biết: a2 +2a + 6b + b2= -10

5. Tìm n∈Z để 2n2-n+2 ⋮ 2n+1

6. Tìm giá trị của biểu thức A= \(\dfrac{x+y}{z}+\dfrac{x+z}{y}\)nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

7. Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:

M=\(\dfrac{10x^2-7x-5}{2x-3}\)

8. Tìm giá trị nhỏ nhất của biểu thức: \(B=\dfrac{x^2-2x+2005}{x^2}\)

Mấy bạn giúp mình thi học kì với ạ! Cảm ơn trước nha!

3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

21 tháng 4 2017

undefined

11 tháng 4 2017

:v Thay cái câu đó = mấy cái dấu roài giải BPT thôi mà

11 tháng 4 2017

mk làm đc rồi

2 tháng 3 2018

a)A= x2-10=-3x

⇔x2+3x-10=0

⇔x2+5x-2x-10=0

⇔(x2+5x)-(2x+10)=0

⇔x(x+5)-2(x+5)=0

⇔(x+5)(x-2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

vậy pt A có tập no S={-5;2}

b)

B=\(\dfrac{A}{x^2+10}=\dfrac{x^2-10}{x^2+10}=\dfrac{x^2+10-20}{x^2+10}=1-\dfrac{20}{x^2+10}\)

Do \(x^2\ge0\forall x\)

=>\(x^2+10\ge10\)

=>\(\dfrac{20}{x^2+10}\le2\)

=>\(-\dfrac{20}{x^2+10}\ge-2\)

=>\(1-\dfrac{20}{x^2+10}\ge-1\)

=> B\(\ge-1\)

=> GTNN B=-1

2 tháng 3 2018

nè,....

Ôn tập: Phương trình bâc nhất một ẩn

24 tháng 2 2020

a, ĐKXĐ : \(x-1\ne0\)

=> \(x\ne1\)

TH1 : \(x-2\ge0\left(x\ge2\right)\)

=> \(\left|x-2\right|=x-2=1\)

=> \(x=3\left(TM\right)\)

- Thay x = 3 vào biểu thức P ta được :

\(P=\frac{3+2}{3-1}=\frac{5}{2}\)

TH2 : \(x-2< 0\left(x< 2\right)\)

=> \(\left|x-2\right|=2-x=1\)

=> \(x=1\left(KTM\right)\)

Vậy giá trị của P là \(\frac{5}{2}\) .

24 tháng 2 2020

a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)

Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)

Thay \(x=3\) vào P, ta có:

\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)

Vậy P = 5 tại x = 3.

b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)

\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

1 tháng 6 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

a) ĐKXĐ:

\(\begin{cases} x+3\ne 0\\ x^2+x-6 \ne 0 \Rightarrow (x+3)(x-2) \ne 0\\ 2-x\ne 0 \end{cases} \\\Leftrightarrow \begin{cases} x\ne -3\\ x\ne 2 \end{cases} \)

 

 

1 tháng 6 2018

b) Với \(x\ne-3;x\ne2\) ta có:

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{1}{x-2}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-4-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x-4}{x-2}\)