Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:rất dễ,nhân chéo sẽ giải đc
bài 2: x+y=-x
=>x+y+z=0
Ta có: \(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}=\frac{0}{21}=0\)
bài 1:
\(\frac{1}{2a^2+1}:x=2\)
\(\Leftrightarrow\frac{1}{2a^2+1}.\frac{1}{x}=2\)
\(\Leftrightarrow\frac{1}{\left(2a^2+1\right).x}=2\)
\(\Leftrightarrow x=\frac{1}{\frac{\left(2a^2+1\right)}{2}}=\frac{1}{2a^2+1}.\frac{1}{2}=\frac{1}{\left(2a^2+1\right).2}=\frac{1}{4a^2+2}\)
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5o}{21}=-\frac{5}{21}\left(x+y+o\right)\)
\(=-\frac{5}{21}\left(-o+o\right)=0\)
A=\(\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)=\(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}=\frac{-5.\left(x+y+z\right)}{21}\)vì x+y=z \(\Rightarrow\)x+y là số đối của z
\(\Rightarrow\)x+y+z=0
\(\Rightarrow\frac{-5}{21}.x+y+z=\frac{-5}{21}.0=0\)
\(\Rightarrow\)A=0
\(A=\dfrac{-5x}{21}+\dfrac{-5y}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5x+\left(-5y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(x+y\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{-5\cdot\left(-z\right)}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z}{21}+\dfrac{-5z}{21}\)
\(A=\dfrac{5z+\left(-5z\right)}{21}=\dfrac{0}{21}=0\)
Vậy \(A=0\)
Ta có :
A = \(\frac{-5.x}{21}+\frac{-5.y}{21}+\frac{-5.z}{21}\)
= \(\frac{-5}{21}.\left(x+y+z\right)\)
= \(\frac{-5}{21}.\left(-z+z\right)\)
= \(\frac{-5}{21}.0\)
= 0
Vậy A = 0
1.
A=\(\frac{-5x+-5y+-5z}{21}=\frac{-5\left(x+y+z\right)}{21}=\frac{-5}{21}.x+y+z\)
A= -z+z=0
<p style="padding: 10000000000000000px;" class="alert success"></p>
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
\(a)\frac{x}{8}=\frac{-30}{y}=\frac{-48}{32}\)
Rút gọn : \(\frac{-48}{32}=\frac{(-48):16}{32:16}=\frac{-3}{2}\)
* Ta có : \(\frac{x}{8}=\frac{-3}{2}\)
\(\Rightarrow x\cdot2=-3\cdot8\)
\(\Rightarrow x=\frac{-3\cdot8}{2}=-12\)
* Ta có : \(\frac{-30}{y}=\frac{-3}{2}\)
\(\Rightarrow-30\cdot2=-3\cdot y\)
\(\Rightarrow y=\frac{-30\cdot2}{-3}=20\)
Mấy bài kia làm tương tự
`Answer:`
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x-5y-5z}{21}\)
\(=\frac{-5\left(x+y\right)-5z}{21}\)
\(=\frac{-5\left(-z\right)-5z}{21}\)
\(=\frac{5z-5z}{21}\)
\(=\frac{0}{21}\)
\(=0\)
Cảm ơn bạn nha