Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
**Tìm giá trị nhỏ nhất của biểu thức
Lời giải:
$(x-2)^2\geq 0$ với mọi $x$
$|y-x|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow A=(x-2)^2+|y-x|+3\geq 3$
Vậy GTNN của $A$ là $3$. Giá trị này đạt tại $(x-2)^2=|y-x|=0$
$\Leftrightarrow x=y=2$
1/ (-25). ( -3). x với x = 4
= ( -25 ) . ( -3 ) . 4
= [ -25 . 4 ] . ( -3 )
= -100 . ( -3 )
= 300
2/ (-1). (-4) . 5 . 8 . y với y = 25
= ( -1 ) . ( -4 ) . 5 . 8 . 25
= [ -1 . 5 . 8 ] . [ -4 . 25 ]
= -40 . ( -100 )
= 4000
4/ [(-25).(-27).(-x)] : y với x = 4; y = -9
= [ -25 . ( -27 ) . ( -4 ) ] . ( -9 )
= -25 . ( -27 ) . ( -4 ) . ( -9 )
= [ -25 . ( -4 ) ] . [ -27 . ( -9 ) ]
= 100 . 243
= 2430
\(a,\left(23+x\right)-\left(56-x\right)=\left(23+7\right)-\left(56-7\right)=30-49=-19\\ b,25-x-\left(29+y-8\right)=25-13-\left(29+11-8\right)=12-32=-20\)
Thay x = 2, y = -5 vào biểu thức ta đươc:
2 + ( − 5 ) 2 − ( − 5 ) = − 3 .7 = − 21
a) Cách 1: Thay x = 7, ta có:
(23 + x) - (56 - x)
= (23 + 7) - (56 - 7)
= 30 - 49
= -19
Cách 2:
Thay x = 7, ta có:
(23 + x) - (56 - x)
= (23 + 7) - (56 - 7)
= 23 + 7 - 56 + 7
= 30 - 56 + 7
= (-26) + 7
=-19.
b) Cách 1: Thay x = 13, y = 11, ta có:
25 - x - (29 + y - 8)
= 25 - 13 - (29 + 11 - 8)
= 12 - 32
= -20.
Cách 2: Thay x = 13, y = 11, ta có:
25 - x - (29 + y - 8)
= 25 - 13 - (29 + 11 - 8)
= 25 - 13 - 29 - 11 + 8
= 12 - 29 - 11 + 8
= (-17) - 11 + 8
= (-28) + 8
=-20.
\(a,x+\left(-12\right)=\left(-24\right)+\left(-12\right)=-36\\ b,\left(-234\right)+y=\left(-234\right)+\left(-145\right)=-379\\ c,x+\left(-12\right)+\left(-234\right)=\left(-1\right)+\left(-12\right)+\left(-234\right)=-247\)
a) Thay x = 4 vào biểu thức ta được ( − 75 ) . ( − 25 ) .4 = ( − 75 ) . ( − 100 ) = 7500
b) Thay x = 2, y = -5 vào biểu thức ta được 2 + ( − 5 ) 2 − ( − 5 ) = − 3 .7 = − 21