Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)
\(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)
Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)
Áp dụng BĐT Cô si ta có:
\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)
\(\Rightarrow x^3+8y^3+1-6xy\ge0\)
Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)
Khi đó:
\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)
Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)
Đến đây tự tính A nha!
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)
A=12-22+32-...+20192
=12+22+...+20192-2(22+42+...+20182)
=B -8(12+22+...+10092)
=B -8C
với B=12+22+...+20192=1(2-1)+2(3-1)+...+2019(2020-1)
=1.2+2.3+...+2019.2020-(1+2+...+2019)
=D-2039190
với D=1.2+2.3+...+2019.2020
3D=1.2.3+2.3.(4-1)+...+2019.2020(2021-2018)
3D=1.2.3+2.3.4+...+2019.2020.2021-(1.2.3+2.3.4+...+2018.2019.2020)
3D=2019.2020.2021 suy ra D=2747468660
ta có :B=2747468660-2039190=2745429470
làm C như B ta có C=342923785
ta có: A=B-C=2745429470-8.342923785=2039190
vậy 12-22+32-...+20192=2039190
đúng thì cho mình nha
Ta có:\(1^2-2^2+3^2-4^2+5^2+...-2018^2+2019^2\)
\(=\left(2019^2-2018^2\right)+...+\left(3^2-2^2\right)+1^2\)
\(=\left(2019-2018\right)\left(2019-2018\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(=2019+2018+...+3+2+1\)
\(=\frac{2019\left(2019+1\right)}{2}\)
\(=2039190\)