Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x+y\right)\left\{\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\right\}\\ \)
Thây số vào
VÌ \(x+y=7;xy=10\)
\(\Rightarrow x,y=5\)và \(2\)
\(\Rightarrow P=\left(5+2\right)\left(5^2+2^2\right)\left(5^3+2^3\right)\)
\(\Rightarrow P=7.29.133\)
\(P=26999\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
\(1.P=x^2\left(x+y\right)-xy\left(x-y\right)-x\left(y^2+1\right)\)
\(=x^3+x^2y-x^2y+xy^2-xy^2-x\)
\(=x^3-x=1^3-1=0\)
\(2,Q=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)
\(=x^2-2x-4x+8-\left(x^2-3x-x+4\right)\)
\(=x^2-6x+8-x^2+4x-4\)
\(=-2x+4\)
\(=-2.\frac{7}{4}+4=-\frac{7}{2}+4=\frac{1}{2}\)
1. P = x2.(x + y) - xy.(x - y) - x.(y2 + 1)
P = x2.x + x2.y + (-xy).x + (-xy).(-y) + (-x).y2 + (-x).1
P = x3 + x2y - x2y + xy2 - xy2 - x
P = x3 + (x2y - x2y) + (xy2 - xy2) - x
P = x3 - x (1) (dạng này rút gọn cho đẹp) :))
Thay x = 1; y = 2006 vào (1), ta có:
P = x3 - x = 13 - 1
= 0
Vậy: ????
2. Q = (x - 4)(x - 2) - (x - 1)(x - 3)
Q = x.x + x.(-2) + (-4).x + (-4).(-2) + (-x).x + (-x).(-3) + (-1).x + (-1).(-3)
Q = x2 - 2x - 4x + 8 - x2 + 3x - x + 3
Q = (x2 - x2) + (-2x - 4x + 3x - x) + (8 + 3)
Q = -4x + 11 (1)
x = 1 3/4 = 7/4
Thay x = 7/4 vào (1), ta có:
Q = -4x + 11 = -4.(7/4) + 11
= 4
Vậy: ...
Q chả cần phải đổi mà cứ thế thay vào cũng đc
Đk: x, y \(\ne\)0
Ta có: P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\left(\frac{x^3+\left(y^2-x^2\right)\left(x+y\right)-y^3}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)
P = \(\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2-x^2-2xy-y^2\right)}{xy\left(x^2+xy+y^2\right)}\)
P = \(\frac{2}{x}-\frac{-xy\left(x-y\right)}{xy\left(x^2+xy+y^2\right)}=\frac{2}{x}+\frac{x-y}{x^2+xy+y^2}=\frac{2x^2+2xy+2y^2+x^2-xy}{x\left(x^2+xy+y^2\right)}\)
P = \(\frac{3x^2+xy+2y^2}{x\left(x^2+xy+y^2\right)}\)
b) Ta có: x2 + y2 + 10 = 2x - 6y
<=> x2 - 2x + 1 + y2 + 6y + 9 = 0
<=> (x - 1)2 + (y + 3)2 = 0
<=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Do đó: P = \(\frac{3.1^2-3.1+2.\left(-3\right)^2}{1\left(1^2-3+\left(-3\right)^2\right)}=\frac{18}{7}\)
x(x^2 + xy + y^2) - y(x^2 + xy + y^2)
`= (x-y)(x^2 + xy + y^2)`
`= x^3 - y^3`
`= 10^3 - 1^3`
`= 1000 - 1`
`= 999`
------------------------
`->` Áp dụng hằng đẳng thức:
`a^3 - b^3 = (a-b)(a^2 + ab + b^2)`