\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=2x^2-6xy-3xy-6y-2x^2+6y+8xy\)

\(=-xy\)

\(=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{2}\)

b: x=16 nên x+1=17

\(N=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^3-x^3+x^3+x^2-x^2-x+20\)

=20-x

=20-16=4

17 tháng 6 2018

Giải:

a) \(M=2x\left(x-3y\right)-3y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(\Leftrightarrow M=2x^2-6xy-3xy-6y-2x^2+6y+8xy\)

\(\Leftrightarrow M=-xy\)

Tại \(x=\dfrac{-2}{3};y=\dfrac{3}{4}\), giá trị M là:

\(M=-\left(\dfrac{-2}{3}\right)\dfrac{3}{4}\)

\(\Leftrightarrow M=\dfrac{1}{2}\)

Vậy ...

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

=20-x

=4

14 tháng 8 2018

\(A=x^4-17x^3+17x^2-17x+20\)

\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+4\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+4\)

\(=4\)

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)

9 tháng 2 2020

Ta có : \(x^2+3y^2=4xy\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)

Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)

Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)

9 tháng 2 2020

Ta có:

\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)

TH1: x=3y

\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)

TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)