Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
\(A=x^3+y^3+x^2z-xyz+zy^2\\ \)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(A=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(A=0\left(x^2-xy+y^2\right)\)
\(A=0\)
\(x=y=z=0\)
\(\Rightarrow0^3+0^2.0-0.0.0+0\cdot0^2+0^3=0\)
Bài này kq như thế nhưng mình nghĩ bạn nên xem lại đề :V
Ta có : x2 + y2 + z2 = 10
<=> (x2 + y2 + z2)2 = 100
<=> x4 + y4 + z4 + 2x2z2 + 2y2z2 + 2x2y2 = 100
<=> x4 + y4 + z4 + 2[(xz)2 + (yz)2 + (xy)2] = 100 (1)
Lại có x + y + z = 0
<=> (x2 + y2 + z2 + 2xy + 2yz + 2zx = 0
<=> 10 + 2(xy + yz + zx) = 0
<=> xy + yz + zx = -5
<=> (xy + yz + zx)2 = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xy2z + 2xyz2 + 2x2yz = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz(x + y + z) = 25
<=> (xy)2 + (yz)2 + (zx)2 = 25 (vì x + y + z = 0) (2)
Thay (2) vào (1) => x4 + y4 + z4 + 2.25 = 100
<=> x4 + y4 + z4 = 50
Khi đó B = x4 + y4 + z4 - 34 = 50 - 81 = -29
Ta có : \(\hept{\begin{cases}\left(x+y+z\right)^2=0\\x^2+y^2+z^2=10\end{cases}< =>2\left(xy+yz+zx\right)}=-10< =>xy+yz+zx=-5\)
\(< =>\left(xy+yz+zx\right)^2=25< =>x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=25\)
\(< =>x^2y^2+y^2z^2+z^2x^2=25\)
Lại có : \(\left(x^2+y^2+z^2\right)^2=100< =>x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=100\)
\(< =>x^4+y^4+z^4=50\)\(\Rightarrow x^4+y^4+z^4-3^4=50-3^4=-31\)
\(\Rightarrow B=-31\)
mình làm nháp nha bạn , nếu trình bày ra giấy thì phải chặt chẽ hơn
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0