Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)
\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)
\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)
câu 2. ta có
a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)
b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!
Tính giá trị của biểu thức sau x=-1,y=2
a,2(y^2-1) = 2(4-1)=6
b,5+2(8X+2) = 5+ 2 (-8+2)= 5+ 2 (-6)= -7
c,X(3+2X) = -1 (3-2)=-1
d,2y(y-2)= 2x2x0=0
e,2(y^2-4X)= 2(4+4)= 16
a) tại y = 2
\(2\left(y^2-1\right)=2\left(2^2-1\right)=2.3=6\)
b) tại x = -1
\(5+2\left(8x+2\right)=5+2\left(-8+2\right)=5-12=-7\)
c) tại x = -1
\(x\left(3+2x\right)=-\left(3-2\right)=-1\)
d) tại y = 2
\(2y\left(y-2\right)=4.0=0\)
e) tại x = -1, y = 2
\(2\left(y^2-4x\right)=2\left(4+4\right)=2.8=16\)