Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
a) \(A=11-\left|\frac{2}{3}x+\frac{1}{2}\right|\) . Có: \(\left|\frac{2}{3}x+\frac{1}{2}\right|\ge0\)
\(\Rightarrow11-\left|\frac{2}{3}x+\frac{1}{2}\right|\le11\)
Dấu '=' xảy ra khi: \(\left|\frac{2}{3}x+\frac{1}{2}\right|=0\Rightarrow\frac{2}{3}x=-\frac{1}{2}\Rightarrow x=-\frac{3}{4}\)
Vậy: \(Max_A=11\) tại \(x=-\frac{3}{4}\)
b) \(B=1+\frac{2}{1+\left|2x-1\right|}\) . Có: \(\frac{2}{1+\left|2x-1\right|}\ge0\Rightarrow1+\frac{2}{1+\left|2x-1\right|}\ge1\)
Để B được giá trị lớn nhất thì \(1+\left|2x-1\right|\) đạt giá trị nhỏ nhất
\(1+\left|2x-1\right|\ge1\)
Dấu = xảy ra khi: \(\left|2x-1\right|=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy: \(Max_B=1+\frac{2}{1}=3\) tại \(x=\frac{1}{2}\)
Với x = \(11-\frac{1}{2}=\frac{21}{2}\)
= \(\frac{21}{2}:\frac{2}{3}=\frac{63}{4}\)
Vậy với \(\frac{63}{4}\)thì đạt giá trị lớn nhất
b) tương tự
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
có 4 trường hợp xảy ra
trường hợp thứ nhất bạn thay cả x và y lớn hơn 0
trường hợp thứ 2 bạn thay cả x và y bé hơn 0
trường hợp thứ 3 bạn thay x lớn hơn 0 y bé hơn 0
trường hợp thứ 4 bạn thay y lớn hơn 0 x bé hơn 0
1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)
2)\(A=\frac{x-7}{2}\)
Do 2>0 =>A>0 <=>x-7>0<=>x>7
Vậy x>7 thì A>0
3)\(A=\frac{x+3}{x-5}\)
Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0
<=>-3<x<5
Vậy -3<x<5 thì A<0
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
Theo bài ta có : \(|x|=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
Thay \(x=\frac{1}{2}\)vào biểu thức A ta có:
\(A=\frac{6^2+\frac{1}{2}-3}{2.\frac{1}{2}+1}\)
\(A=\frac{36+\frac{1}{2}-3}{1+1}=\frac{36,5-3}{2}=\frac{33,5}{2}=16,75\)
Thay \(x=\frac{-1}{2}\)vào biểu thức A ta có:
\(A=\frac{6^2+\frac{-1}{2}-3}{2.\frac{-1}{2}+1}\)
\(A=\frac{6^2+\frac{-1}{2}-3}{0}\)( phép tính không thực hiện được )
Vậy giá trị của biểu thức A tại \(|x|=\frac{1}{2}\)là 16,75
Ta có |x|=\(\frac{1}{2}\)=> x=\(\orbr{\begin{cases}\frac{1}{2}\\\frac{-1}{2}\end{cases}}\)
với x=\(\frac{1}{2}\)ta có:
A=\(\frac{6^2+\frac{1}{2}-3}{2.\frac{1}{2}+1}\)=\(\frac{36+\frac{1}{2}-3}{1+1}\)=\(\frac{\frac{72}{2}+\frac{1}{2}-3}{2}\)
=\(\frac{\frac{73}{2}-3}{2}\)=\(\frac{\frac{73}{2}-\frac{6}{2}}{2}\)=\(\frac{67}{2}\):2=\(\frac{67}{4}\)
với x =\(\frac{-1}{2}\)ta có:
A=\(\frac{6^2+\left(\frac{-1}{2}\right)-3}{2.\left(\frac{-1}{2}\right)+1}\)=\(\frac{36+\left(\frac{-1}{2}\right)-3}{-1+1}\)=\(\frac{\frac{72}{2}+\left(\frac{-1}{2}\right)-3}{0}\)
=\(\frac{\frac{71}{2}-3}{0}\)=\(\frac{\frac{71}{2}-\frac{6}{2}}{0}\)=\(\frac{65}{2}\):\(o\)=0
Vậy A=\(\frac{67}{4}\); A=0