K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

20082+4016-3

=20082+2.2008.1+1-4

=(2008+1)2-4

=20092-22

=2007.2011

rút gọn ta được:

\(\dfrac{\left(2008^2-2014\right).2009}{2005.2010}\) (1)

Tiếp theo bạn có thể :

Đặt 2008=x

--> 20082-2014=x2-x-6

giải phương trình trên ta được:

x2-x-6=(x-3).(x+2)

lúc này:

(x-3).(x+2)=(2008-3).(2008+2)=2005.2010 (2)

Từ (1) và (2):

=>\(\dfrac{2005.2010.2009}{2005.2010}\)= 2009

28 tháng 8 2018

= 2009

Hk tốt

23 tháng 10 2017

Đặt biểu thức là A: 

\(A=-6.2009^2-2^2.2009=-6.2007.2009.2011\)

\(A=\frac{-6.2009}{2005.2010}\)

\(A=\frac{-2009}{2005.335}\)

P/s: Ko chắc

23 tháng 10 2017

86887

M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]

ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui

=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]

=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008

9 tháng 12 2018

Thay \(xy+yz+xz=2018\) ta được:

\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)

Sau đó thay vào lần lượt đề bài là được

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

10 tháng 7 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2.0\)

\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\)

\(B=\left(-1\right)^{2007}+0^{2008}+1^{2009}=0\)