Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{4}.\left(\frac{101.33}{101.12}+\frac{101.33}{101.20}+\frac{101.33}{101.30}+\frac{101.33}{101.42}\right)\)
\(=\frac{7.33}{4}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\\ =\frac{7.33}{4}\left(\frac{35+21+14+1}{420}\right)\)
\(=\frac{7.3.11}{4}.\frac{71}{420}=\frac{7.3.11.71}{4.4.5.3.7}=\frac{781}{100}\)
mk lm chak vớ vẩn rồi
\(A=\frac{7}{4}\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(A=\frac{7}{4}\left(\frac{385}{140}+\frac{231}{140}+\frac{154}{140}+\frac{110}{140}\right)\)
\(A=\frac{7}{4}.\frac{44}{7}\)
\(A=\frac{44}{4}=11\)
Ta có
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(=\frac{7}{4}.\left[\frac{3333}{101}.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
\(=\frac{7}{4}.\left[\frac{3333}{101}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
\(=\frac{7}{4}.\left[\frac{3333}{101}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(=\frac{7}{4}.\left[\frac{3333}{101}.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(=\frac{7}{4}.\frac{3333}{101}.\frac{4}{21}=\frac{1111}{101}\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\frac{4}{21}=\frac{231}{21}=11\)
k nha
\(A=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(A=\frac{7}{4}\left[33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(A=\frac{7}{4}\left[33\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(A=\frac{7}{4}\left[33\times\frac{4}{21}\right]\)
\(A=\frac{7}{4}\times\frac{44}{7}\)
\(A=11\)
A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
A=\(\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
A= \(\frac{7}{4}.\left[33.\frac{4}{21}\right]\)
A= \(\frac{7}{4}.\frac{44}{7}\)
A= 11
Vậy A= 11
A = 7/4 . (3333/1212 + 3333/2020 + 3333/3030 + 3333/4242)
A = 7/4 . (11/4 + 33/20 + 11/10 + 11/14)
A = 7/4 . 44/7
A = 11
Chúc bạn học tốt
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{6}\right)\)
\(A=\frac{7}{4}.33.\frac{1}{6}\)
\(A=\frac{7.33}{4.6}\)
\(A=\frac{7.3.11}{4.3.2}\)
\(A=\frac{7.11}{4.2}\)
\(A=\frac{77}{8}\)
=> A=\(\frac{7}{4}\) . ( \(\frac{33}{12}\) + \(\frac{33}{20}\) + \(\frac{33}{30}\) + \(\frac{33}{42}\) ) => A= \(\frac{7}{4}\).33. ( \(\frac{1}{12}\) + \(\frac{1}{20}\) + \(\frac{1}{30}\) + \(\frac{1}{42}\) )
=> A=\(\frac{7}{4}\).33. ( \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + \(\frac{1}{5.6}\) + \(\frac{1}{6.7}\) ) = \(\frac{7}{4}\).33.(\(\frac{1}{3}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - \(\frac{1}{7}\) )
= \(\frac{7}{4}\) .33.(\(\frac{1}{3}\) - \(\frac{1}{7}\)) = \(\frac{7}{4}\) .33. \(\frac{4}{21}\) = 11. Vậy A=11
Ta có:
\(\Rightarrow A=\frac{7}{4}.\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(\Rightarrow A=\frac{7}{4}.\frac{44}{7}=11\)