Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-y^2=\left(x+y\right)\left(x-y\right)=\left(87+13\right)\left(87-13\right)=100.74=7400\)\(b,x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)c,\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=1000000\)
a) x2 - y2 = (x+y)(x-y)
Thay x=87; y=13 có:
(87+13)(87-13) = 100.74 = 7400
b)x3-3x2+3x-1 = x3 - 3x2.1+ 3x .12 -13 = (x-1)3
Thay x=101 có:
(101-1)3 =1003 =1000000
c)x3+9x2+27x+27= x3 +3x2.1+3x.12+33= (x+3)3
Thay x=97 có:
(97+3)3= 1003=1000000
a) x2 - y2 = ( x+y )( x-y )
Thay x = 87 và y = 13 vào biểu thức a) ta có :
( 87+13 )( 87-13 ) = 100.74 = 7400
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)
Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)
c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)
\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)
Thay \(x=234\)và \(y=465\)vào biểu thức ta được:
\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)
a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)
\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:
\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)
b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Tại x = 103 thì giá trị của BT là:
\(\left(103-3\right)^3=100^3=1000000\)
c) Ta có: \(4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x-y-1\right)\left(2x+y+1\right)\)
Tại x = 234, y = 465 thì giá trị của BT là:
\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)
\(=2\cdot934=1868\)
a, \(A=\left(100+50\right)^2=22500\)
b, \(B=\left(127+73\right)^2=40000\)
c, \(C=-6x+25\)Thay x = 100 ta có :
\(C=-6.100+25=-600+25=-575\)
\(A=100^2+200.50+50^2\)
\(=100^2+2.100.5+50^2\)
\(=\left(100+50\right)^2=150^2\)
\(B=127^2+146.127+73^2\)
\(=127^2+2.73.127+73^2\)
\(=\left(127+73\right)^2=200^2\)
a ) Gọi \(A=\dfrac{3x^2-x}{9x^2-6x+1}\)
Ta có : \(A=\dfrac{x\left(3x-1\right)}{\left(3x\right)^2-2.3x.1+1}=\dfrac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\dfrac{x}{3x-1}\)
Thay x = - 8 và biểu thức A ta được :
\(A=\dfrac{-8}{3.\left(-8\right)-1}=\dfrac{8}{25}\)
Vậy giá trị của biểu thức A là \(\dfrac{8}{25}\) tại x = - 8
b ) Gọi \(B=\dfrac{x^2+3x+2}{x^3+2x^2-x-2}\)
Ta có \(B=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{x^2\left(x+2\right)-\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{\left(x^2-1\right)\left(x+2\right)}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x-1}\)
Thay x = 1000001 và biểu thức B ta được :
\(B=\dfrac{1}{1000001-1}=\dfrac{1}{100000}\)
Vậy giá trị của biểu thức B là \(\dfrac{1}{1000000}\) tại x = 1000001
a: \(=\dfrac{5}{2}x-2x+\dfrac{7}{2}=\dfrac{1}{2}x+\dfrac{7}{2}\)
b: \(=\dfrac{-1}{4}x^4-3x^2+\dfrac{9}{4}x\)
c: \(=\dfrac{1}{5}x+\dfrac{1}{15}xy+\dfrac{7}{10}x^2\)
d: \(=-9x^3-1-12y+27xy\)
1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)
\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)
2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)
\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)
3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)
\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)
4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)
a)Tại \(x=87;y=13\) thì
\(A=x^2-y^2=\left(x-y\right)\left(x+y\right)\)
\(=\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)Tại \(x=\dfrac{1}{3}\) thì
\(B=9x^2-6x+1=\left(x-\dfrac{1}{3}\right)^2\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)^2=0^2=0\)
c)Tại \(x=1;y=2\) thì
\(C=4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
\(=\left(2\cdot1-3\cdot2\right)^2=\left(-4\right)^2=16\)
a, Ta có:
\(A=x^2-y^2=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) vào A ta được:
\(\left(87-13\right)\left(87+13\right)=74.100=7400\)
b, Ta có:
\(B=9x^2-6x+1=9x^2-3x-3x+1\)
\(=3x\left(3x-1\right)-\left(3x-1\right)\)
\(=\left(3x-1\right)^2\)
Thay \(x=\dfrac{1}{3}\) vào B ta được:
\(\left(3.\dfrac{1}{3}-1\right)^2=0\)
c, Ta có:
\(C=4x^2-12xy+9y^2=4x^2-6xy-6xy+9y^2\)
\(=2x\left(2x-3y\right)-3y\left(2x-3y\right)\)
\(=\left(2x-3y\right)^2\)
Thay \(x=1;y=2\) vào biểu thức C ta được:
\(\left(2.1-3.2\right)^2=\left(2-6\right)^2=\left(-4\right)^2=16\)
Chúc bạn học tốt!!!