K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(Q=2x^4-4x^3+2x^2+4x^2-4x\)

\(=2\left(x^2-x\right)^2+4\left(x^2-x\right)\)

\(=2\cdot7^2+4\cdot7=2\cdot49+28=98+28=126\)

 

16 tháng 10 2017

A=2x4-4x3+6x2-4x=2x4-4x3+2x2+4x2-4x

=2(x4-2x3+x2)+4(x2-x)=2(x2-x)2+4(x2-x)

Mà x2-x=7

=>A=2 .72+4 .7

16 tháng 10 2017

Ta có: A=2x\(^4 \)-4x\(^3 \)+6x\(^2 \)-4x

A=2x(x\(^3 \)-2x\(^2\)+3x-2)

A=2x(x\(^3 \)-x\(^2\)-x\(^2\)+x+2x-2)

A=2x(x\(^2\)(x-1)-x(x-1)+2(x-1))

A=2x(x-1)(x2 -x+2)

A=2(x2-x)(x2-x+2)

Thay x2-x =7,ta có:

A=2.7.(7+2)=126

28 tháng 10 2020

\(A=6x\left(2x-7\right)-\left(3x-5\right)\left(4x+7\right)\)

\(=12x^2-42x-\left(12x^2+x-35\right)\)

\(=12x^2-42x-12x^2-x+35\)

\(=-43x+35\)

Thay x = -2 vào biểu thức A ta có :

\(A=-43.\left(-2\right)-35=86+35=121\)

Vậy tại x = -2 thì A = 121

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

28 tháng 10 2019

a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3

b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x

8 tháng 9 2021

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1