Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)
Giải thích:
\(\frac{2}{1.2.3}=\frac{3}{1.2.3}-\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4}{2.3.4}-\frac{2}{2.3.4}=\frac{1}{1.2}-\frac{1}{3.4}\)
................................................................................
\(\frac{2}{2017.2018.2019}=\frac{2019}{2017.2018.2019}-\frac{2017}{2017.2018.2019}=\frac{1}{2017.2018}-\frac{1}{2018.2019}\)
\(P=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2017}-1\right)\left(\frac{1}{2018}-1\right)\)
\(P=\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right)\left(\frac{-3}{4}\right).....\left(\frac{-2016}{2017}\right)\left(\frac{-2017}{2018}\right)\)
\(P=\frac{\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)....\left(-2017\right)}{2.3.4......2017.2018}\)
\(P=\frac{\left(-1\right)\left[\left(-2\right)\left(-3\right)\right]\left[\left(-4\right)\left(-5\right)\right]...\left[\left(-2016\right)\left(-2017\right)\right]}{\left[2.3\right]\left[4.5\right]....\left[2016.2017\right].2018}\)
\(P=\frac{\left(-1\right)\left[2.3\right]\left[4.5\right]....\left[2016.2017\right]}{\left[2.3\right]\left[4.5\right].....\left[2016.2017\right].2018}=\frac{-1}{2018}\)
Nguyễn Tiến Đạt
a)\(|3x-5|=|x+2|\)
=> Ta có 2 trường hợp
*) TH1: 3x-5=x+2
=>3x-x=2+5
=>2x=7
=>x=7:2\(\Rightarrow x=\frac{7}{2}\)
*)TH2: -3x+5=x+2
\(\Rightarrow5-3x=x+2\)
\(\Rightarrow5-2=x+3x\)
\(\Rightarrow3=4x\)
\(\Rightarrow x=3:4\Rightarrow x=\frac{3}{4}\)
Vậy \(x\in\left\{\frac{7}{2};\frac{3}{4}\right\}\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2018^2}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{4072324}\right)\)
\(\Rightarrow A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{4072323}{4072324}\)
\(\Rightarrow A=\frac{3.8.15...4072323}{4.9.16...4072324}\)
\(\Rightarrow A=\frac{3.4.2.3.5...2017.2019}{2.2.3.3.4.4...2018.2018}\)
\(\Rightarrow A=\frac{\left(2.3.4...2017\right).\left(3.4.5...2019\right)}{\left(2.3.4...2018\right).\left(2.3.4...2018\right)}\)
\(\Rightarrow A=\frac{1.2019}{2018.2}\)
\(\Rightarrow A=\frac{2019}{4036}\)
Vậy ...
P/s : Mik ko chắc đâu
~ Ủng hộ nhé
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2018^2}\right)\)
\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{4072323}{2018^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2017.2019}{2018^2}\)
\(A=\frac{1.2.3...2017}{2.3.4...2018}.\frac{3.4.5...2019}{2.3.4...2018}\)
\(A=\frac{1}{2018}.\frac{2019}{2}\)
\(A=\frac{2019}{4036}\)
_Chúc bạn học tốt_
https://m.imgur.com/a/o7Vo0kL
CHịu khó gõ link.onl đt bèn làm ntnày thôi nha
Ảnh trên không hiện rồi nhé !
P=(1/2-1).(1/3-1).(1/4-1)......(1/2017-1). (1/2018-1)
Ta có:
Số số hạng:(2018-2):1+1=2017( số)
Do 2017 là số lẻ nên,ta có:
P=(-1/2).(-2/3).(-3/4).....(-2015/2016). (-2016/2017).(-2017/2018)
P=-1/2018
Tinh gia chi bieu thuc 2018 : 1/2 + 2018 : 1/3 + 2018 : 1/4 + 2018