\(M=a^2+b^2\) biết a và b thỏa mãn:

                   ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

v~ ~ ~ vừa thi hả,tưởng có đáp án r

\(HPT\Leftrightarrow\hept{\begin{cases}3a^2b-b^3=-1\left(1\right)\\3ab^2-a^3=-2\left(2\right)\end{cases}}\)lần lượt bình phương hai phương trình rồi cộng lại ta được :

\(\left(3a^2b-b^3\right)^2+\left(3ab^2-a^3\right)^2=5\)

\(\Leftrightarrow\left(a^2+b^2\right)^3=5\)( bung màu là thấy liền hà )

\(\Leftrightarrow a^2+b^2=\sqrt[3]{5}\)

3 tháng 6 2017

 Sakata Kintoki nó thỏa mãn  cái j vậy bạn

15 tháng 7 2019

\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)

=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>a=-b hoặc a=-c hoặc b=-c (1)

=>a=1 hoăc b=1 hoặc c=1 (2)

từ 1 và 2 => Q=1

Theo bài ra ta có :

 \(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

\(=233^2+2010^2\)

\(\Rightarrow\left(a^2+b^2\right)^3=4094389\)

\(\Rightarrow a^2+b^2=\sqrt[3]{4094389}\)

2 tháng 8 2016

gửi câu hỏi rồi tự trả lời luôn (tự kỉ) à  ?

2 tháng 8 2020

bài 2 là tìm giá trị lớn nhất ạ!

ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)

\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)

dấu đẳng thức xảy ra khi xy=yz=zx

3 tháng 8 2020

Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!

AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)

\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)

\(\Rightarrow S=a^2+b^2\ge13\) (đúng)

Đẳng thức xảy ra khi a=3, b=2.

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

13 tháng 7 2018

Ta có : a3 - a2b + ab2 - 6b3 = 0

    <=> a3 + a2b + 3ab2 - 2a2b - 2ab2 - 6b3 = 0

    <=> a( a2 + ab + 3b2 ) - 2b( a2 + ab +3b2 ) = 0

    <=> ( a2 + ab + 3b2 ).( a - 2b ) = 0

=> a2 + ab + 3b= 0  (1) hoặc a - 2b = 0  (2)

Giải (1) : a2 + ab + 3b= 0

       Vì a > b > 0 => a2 + ab + 3b khác 0

                           => a2 + ab + 3b= 0 ( vô nghiệm )

Giải (2) : a - 2b = 0 <=> a = 2b thay vào D :

=> D = ( 16b- 4b4 )/( b4 - 64b)

=> D = 12b4/-63b4

=> D = -4/21

\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0.\) " (chia 2 vế cho b^3)

\(t^3-t^2+t-6=0\)  " đăt a/b=t

từ đây bạn có thể dễ dàng tìm được t   

mình chỉ gợi ý đến đây thôi