Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\left(-1\dfrac{1}{6}\right)\) : \(\left(\dfrac{-10}{3}+\dfrac{9}{4}\right)\) - \(\left(-\dfrac{3}{8}\right)\) : \(\left(8-\dfrac{51}{8}\right)\)
B = \(\dfrac{-7}{6}\) : \(\dfrac{-13}{12}\) - \(\left(-\dfrac{3}{8}\right)\) : \(\dfrac{13}{8}\)
B = \(\dfrac{14}{13}\) - \(\dfrac{-3}{13}\)
B = \(\dfrac{17}{13}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot\dfrac{0}{6}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot0\)
\(Q=0\)
\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)
e: \(=\left(\dfrac{18}{37}+\dfrac{19}{37}\right)+\left(\dfrac{8}{24}+\dfrac{2}{3}\right)-\dfrac{47}{24}=2-\dfrac{47}{24}=\dfrac{1}{24}\)
f: \(=-8\cdot\dfrac{1}{2}:\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-4:\dfrac{13}{12}=\dfrac{-48}{13}\)
g: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}-\dfrac{8}{4}=\dfrac{4}{25}+\dfrac{55}{4}-2=\dfrac{1191}{100}\)
\(C=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{2499}\right)\)
\(C=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{2500}{2499}\)
\(C=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}...\dfrac{50.50}{49.51}\)
\(C=\dfrac{2.2.3.3.4.4...50.50}{1.3.2.4.3.5...49.51}\)
\(C=\dfrac{2.3.4...50}{1.2.3...49}.\dfrac{2.3.4...50}{3.4.5...51}\)
\(C=50.\dfrac{2}{51}\)
\(C=\dfrac{100}{51}\)
\(\left(\dfrac{1}{200}+\dfrac{1}{300}+\dfrac{1}{400}+...+\dfrac{1}{1000}\right).1.2.3.4.5\).\(\left(\dfrac{1}{120}-\dfrac{1}{180}-\dfrac{1}{360}\right)\)
Xét \(\left(\dfrac{1}{120}-\dfrac{1}{180}-\dfrac{1}{360}\right)\) ta có :
= \(\dfrac{1}{120}-\left(\dfrac{1}{180}+\dfrac{1}{360}\right)\) =\(\dfrac{1}{120}-\dfrac{1}{120}=0\)
Trong 1 tích nếu có 1 thừa số 0 thì tích đó bằng 0
Biểu thức trên có 1 thừa số 0 nên biểu thức trên bằng 0