\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99 +1/50

=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+..+1/(99+1).99:2+1/50

=2/2.3+2/3.4+2/4.5+..+2/99.100+1/50

=2(1/2.3+1/3.4+1/4.5+..+1/99.100)+1/50

=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50

=2(1/2-1/100)+1/50

=49/50+1/50=1

 

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

2 tháng 1 2019

B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)

B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)

B= 1/2 +1/100=51/100

k mk nhóe

sai thì chỉ mk nhoa

2 tháng 1 2019

a)A=1/51+1/52+...+1/100

=>A>1/100+1/100+...+1/100

=>A>50/100(vì có 50 số hạng)

=> A>1/2

b)Ta có:

B=1/2.3+1/3.4+...+1/99.100

=> B=1/2-1/3+1/3-1/4+...+1/99-1/100

=> B=1/2-1/100

Mà 1/100>0

=> B<1/2

=> B<1/2<A

=>B<A

11 tháng 12 2016

Với mọi \(x\in Z\) ta có:

\(1+2+3+..+n=\frac{n\left(n+1\right)}{2}\)

=> \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}=2\left[\frac{1}{n\left(n+1\right)}\right]=2\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

Có:

\(\frac{1}{1+2}=2\left(\frac{1}{2}-\frac{1}{3}\right)\)

\(\frac{1}{1+2+3}=2\left(\frac{1}{3}-\frac{1}{4}\right)\)

.......................................................

\(\frac{1}{1+2+3+4+...+99}=2\left(\frac{1}{99}-\frac{1}{100}\right)\)

Nên:

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+..+99}+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+...+2\left(\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2\cdot\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)

11 tháng 12 2016

Cảm ơn bạn (chị ) nhiều !leu

Công nhận chị học giỏi thật đấy !eoeo

5 tháng 7 2017

3. S= -1/6 + -1/20 + 1/10 + 1/6

=0

4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)

=-25

14 tháng 1 2019

2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800 

14 tháng 1 2019

\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)