Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C= (a+b)(a+1)(b+1)
=) C= (a+b)(ab+a+b+1)
=) C= 3*(5+3+1)
=) C=27
( a + b ) . ( a + 1) ( b+1)
= 3. [a( b + 1) +( b + 1)]
= 3. [ab + a + b + 1]
= 3. [ -5 +3 + 1]
= -3
Bạn kia ngu quá !!!!
mình giải đúng nèk
\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)=\left(a+b\right)\left[a\left(b+1\right)+\left(b+1\right)\right]\)
\(=\left(a+b\right)\left(ab+a+b+1\right)=3\left(-5+3+1\right)=3.\left(-1\right)=-3\)
\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)\)
\(C=\left(a+b\right)\cdot ab+b+a+1\)
\(C=\left(a+b\right)\cdot ab+\left(a+b\right)+1\)
Thay \(a+b=3;ab=5\)vào biểu thức \(C\)ta được \(:\)
\(C=3\cdot\left(-5\right)+3+1=-15+3+1=-11\)
Vậy \(.............................................................\)
\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow C=\left(3a+1\right)\left(b+1\right)\)
\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)
\(\Leftrightarrow C=3ab+3a+3b+3\)
\(\Leftrightarrow C=3ab+3\left(a+b\right)+3\)
\(\Leftrightarrow C=3.\left(-5\right)+3.3+3\)
\(\Leftrightarrow C=\left(-15\right)+9+3\)
\(\Leftrightarrow C=\left(-3\right)\)
Vậy \(C=\left(-3\right)\)
- Chết cmnr :)) T làm nhầm 1 chỗ
Làm lại nè:
\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow C=\left(3a+3\right)\left(b+1\right)\)
\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)
\(\Leftrightarrow C=3ab+3a+3b+3\)
\(\Leftrightarrow C=3.\left(-5\right)+3\left(a+b\right)+3\)
\(\Leftrightarrow C=\left(-15\right)+3.3+3\)
\(\Leftrightarrow C=\left(-15\right)+9+3\)
\(\Leftrightarrow C=\left(-3\right)\)
p/s : Không hiểu mắt tớ bị hỏng chỗ nào mà số 3 viết thành 1 nhưng đáp án vẫn đúng =))
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
\(A=\frac{5}{2}x+1\) \(B=0,4x-5\)
a) \(A=\frac{5}{2}.\frac{1}{5}+1\) \(B=0,4.\left(-10\right)-5\)
\(A=\frac{1}{2}+1=1\) \(B=-4-5=-9\)
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
25
ta có:
\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)\\ C=\left(a+b\right)\left[\left(a+1\right)\left(b+1\right)\right]\\ C=\left(a+b\right)\left[ab+b+a+1\right]\\ C=\left(a+b\right)\left[ab+\left(a+b\right)+1\right]\)
thay a + b = 3 và ab =5 vào C ta có:
\(C=3\left[5+3+1\right]\\ \Rightarrow C=3.9\\ C=27\)
vậy C = 27