K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Ta có :

\(M=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)

\(=3\left(x^2+y^2+2xy-2xy\right)-\left(x+y\right)\left(x^2+y^2-xy\right)+1\)

\(=3\left(x^2+y^2+2xy\right)-6xy-\left(x+y\right)\left(x^2+y^2+2xy-3xy\right)+1\)

\(=3.\left(x+y\right)^2-6xy-\left[\left(x+y\right)\left(x^2+y^2+2xy\right)-\left(x+y\right)3xy\right]+1\)

\(=3\left(x+y\right)^2-6xy-\left(x+y\right)\left(x+y\right)^2+\left(x+y\right)3xy+1\)

\(=3\left(x+y\right)^2-6xy-\left(x+y\right)^3+\left(x+y\right)3xy+1\)

Thay \(x+y=2;\)có :

\(M=3.2^2-6xy-2^3+6xy+1\)

\(=12-8+1\)

\(=5\)

Vậy ...

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

7 tháng 10 2017

Ta có : \(3\left(x^2+y^2\right)-\left(x^3+y^3\right)\)

\(=3\left(x^2+2xy+y^2-2xy\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+1\)

\(=3\left(x+y\right)^2-6xy-2\left(x^2+2xy+y^2-3xy\right)\)

\(=3\left(x+y\right)^2-6xy-2\left(x+y\right)^2+6xy\)

\(=\left(x+y\right)^2\left(3-2\right)\)

\(=2^2=4\)

7 tháng 10 2017

Ta có:
\(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3\left(x^2+y^2\right)-\left(x+y\right)\left(x^2+y^2-xy\right)+1\)    ( 1 )
Do x + y = 2 nên biểu thức ( 1 ) trở thành:
\(=3\left(x^2+y^2\right)-2\left(x^2+y^2-xy\right)+1\)
\(=3\left(x^2+y^2\right)-2\left(x^2+y^2\right)+2xy+1\)
\(=\left(x^2+y^2\right)+2xy+1\)
\(=\left(x+y\right)^2+1\)    ( 2 )
Do x + y = 2 nên biểu thức ( 2 ) trở thành:
\(=2^2+1=5\)
Vậy với x + y = 2 thì \(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1=5\)

31 tháng 8 2021

$(x+y)^2\\=x^2+2xy+y^2\\=(x^2-2xy+y^2)+4xy\\=(x-y)^2+4xy\\=5^2+4.3\\=25+12\\=37$

31 tháng 8 2021

`A=(x+y)^2=x^2+2xy+y^2=(x^2-2xy+y^2)+4xy=(x-y)^2+4xy`

Thay `x-y=5;xy=3` được: `A=5^2+4.3=37`

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

29 tháng 7 2023

`M=2(x^3 -y^3 )-3(x^2 +y^2)`

`M=2(x-y)(x^2 +xy+y^2 )-3x^2 -3y^2`

`M=2x^2 +2xy+2y^2 -3x^2 -3y^2`

`M=-x^2 +2xy-y^2`

`M=-(x^2 -2xy+y^2)`

`M=-(x-y)^2`

`M=-(1)^2`

`M=-1`

29 tháng 7 2023

\(M=2\left(x^3-y^3\right)-3\left(x^2-y^2\right)\)

\(M=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x+y\right)\)

\(M=2\left[x^2+x\left(x-1\right)+\left(x-1\right)^2\right]-3\left(2x-1\right)\)

\(M=2\left(x^2+x^2-x+x^2-2x+1\right)-6x+3\)

\(M=6x^2-12x+5\)

 Đề bài yêu cầu tính giá trị nhưng mình cũng không rõ là giá trị gì nên mình làm đến đây thôi nhé.

 

 

26 tháng 8 2021

a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)

b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)