Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
mình ko bt cách viết phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
P=sin2200+sin2400+sin2450+sin2500+sin2700
đổi sin2500 thành cos2400,sin2700 thành cos2200 rồi thay vào ta được:
sin2200+cos2200+sin2400+cos2400+\(\left(\dfrac{\sqrt{2}}{2}\right)^2\)
=\(2+\dfrac{1}{2}=\dfrac{5}{2}=2,5\)
a)
\(A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(70\right)+sin^2\left(80\right)\\ A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(40\right)+cos^2\left(40\right)+...+cos^2\left(20\right)+cos^2\left(10\right)\\ A=\left(sin^2\left(10\right)+cos^2\left(10\right)\right)+\left(sin^2\left(20\right)+cos^2\left(20\right)\right)+....+\left(sin^2\left(40\right)+cos\left(40\right)\right)\\ A=1+1+1+1+1=4\)câu b tương tự
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
a: \(A=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+...+\left(\sin^240^0+\sin^250^0\right)\)
=1+1+1+1
=4
b: \(B=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+...+\cos^245^0\)
\(=1+1+1+1+\dfrac{1}{2}=\dfrac{9}{2}\)
\(B=\left(sin^270^0+sin^220^0\right)^3-3\cdot sin^270^0\cdot cos^270^0\cdot1+3\cdot sin^270^0\cdot cos^270^0\)
=1