\(B^2=C\times(A-B)-B\times(A-C)VA=-50,B-C=2\)         ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

=a.c -b.c -b.a +b.c

=a.c - b.a - b.c + b.c

=a(c-b)

=-a(b-c)

=-(-50)(2)

=100

\(B^2=100\)

\(B=\sqrt{100}=10\)

15 tháng 2 2020

Ta có:

B^2=c(a-b)-b(a-c)

      =ac-bc-ab+bc

      =ac-ab=a(c-b)

      =-a[-(c-b)]=-a(b-c)           (*)

Thay -a=-50; b-c=2 vào (*), ta được:

B^2=-50.2=-100 (vô lí, vì B^2 > hoặc = 0 với mọi a,b,c)

Vậy ko có giá trị biểu thức B thỏa mãn điều kiện đề bài.

*tk giúp mình nhé!! 😊*

9 tháng 2 2020

a, 2x + 12= 3(x - 7)

=> 2x + 12 = 3x + 21

=> 12 - 21 = 3x - 2x

=> -9 = x

vậy x = -9

b,-2x-(-17)=15

=> -2x + 17 = 15

=> -2x = 32

=> x = -16

Bài 2

a, A=(-a-b-c)-(-a-b-c)

= -a - b - c + a + b + c 

= 0

b, thay vào thì nó vẫn = 0 thôi

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"

20 tháng 3 2016

a,\(\frac{17}{12}\)

b,\(\frac{-134}{81}\)

c,x=2

d,x=7

26 tháng 2 2018

a, Áp dụng bđt cosi ta có : 

a/b + b/a >= \(2\sqrt{\frac{a}{b}.\frac{b}{a}}\)= 2

b, Tương tự câu (a) ta có : b/c + c/b >= 2 ; c/a + a/c >= 2

=> S - a/c + b/c + b/a + c/a + c/b + a/b = (a/b + b/a) + (b/c + c/b) + (c/a + a/c) >= 2+2+2 = 6

Tk mk nha

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

a) Ta có :\(\left|3-x\right|\ge0\forall x\in R\)

Nên : \(-\left|3-x\right|\le0\forall x\in R\)

Do đó : \(Q=1010-\left|3-x\right|\le1010\forall x\in R\)

Vậy \(Q_{max}=1010\) đấu "=" xày ra khi |3 - x| = 0 

                                                        <=> 3 - x = 0 

                                                            <=> x = 3

b) Ta có : \(\left(3-x\right)^2\ge0\forall x\in R\)

Nên : \(\left(3-x\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\frac{5}{\left(3-x\right)^2+1}\le\frac{5}{1}=5\)

Vậy \(C_{max}=5\) dấu bằng sảy ra khi (3 - x)2 + 1 = 1

                                                        <=> (3 - x)2 =0 

                                                           <=> 3 - x = 0 

                                                                  <=> x = 3 

c) Ta có : \(\left|x-2\right|\ge0\forall x\)

Nên : \(\left|x-2\right|+2\ge2\forall x\)

Suy ra : \(\left|x-2\right|+2\le\frac{4}{2}=2\forall x\)

Vậy \(D_{max}=2\) dấu "=" xảy ra khi |x - 2| + 2 = 2 

                                                  <=> |x - 2| = 0 

                                                 <=> x - 2 =0 

                                                        <=> x = 2 

20 tháng 4 2018

a)\(Q=1010-|3-x|\)

Để Q có giá trị lớn nhất \(\Leftrightarrow|3-x|\)là số nguyên dương nhỏ nhất có thể =>\(|3-x|=1\)\(\Leftrightarrow3-x=1\Leftrightarrow x=2\)

@_@