\(A=\frac{x-y}{x+y}\) biết \(x^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Ta có \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

với x=2y, thao vào, ta có A=1/3

với x=-y thay vào không thỏa mãn 

^.^

17 tháng 8 2018

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\) 

\(\Rightarrow x-2y=0\) vì \(x+y\ne0\)

\(\Leftrightarrow x=2y\Rightarrow A=\frac{2y-y}{2y+y}=\frac{1}{3}\)

22 tháng 12 2014

\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)

\(\Rightarrow x=2y\)

Thay vào A tính đc giá trị của A

10 tháng 1 2021

Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Vì \(x+y\ne0\Rightarrow x=2y\)

=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)

=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)

=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)

\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)

Từ (1) và (2) suy ra

\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)

=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)

à thêm cái này nữa. Sorry viết thiếu

Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)

lúc đó  \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)