K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(A=x^2\left(x-y\right)+y^3-xy^2+4x^2y+4xy^2\)

\(=x^3-x^2y+y^3-xy^2+4x^2y+4xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\)

Thay x=1001 và y=999 vào A ta đc:

A=(1001+999)^3=2000^3=8 000 000 000

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

20 tháng 12 2021

1) A. 999.

2) C. 9.

20 tháng 12 2021

1: A

2: C

10 tháng 8 2017

\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)

\(A=125-15xy-50+4xy+15xy-4xy+15+10\)

\(A=100\)

11 tháng 6 2016

Viết lại : 

a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)

b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)

11 tháng 6 2016

a) M=(x+y)3+2x2+4xy+2y2

     M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539

b)N=(x-y)3-x2+2xy-y2

    N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150

a)Ta có:\(x-y=2\Rightarrow\left(x-y\right)^2=4\Rightarrow\left(x^2+y^2\right)-2xy=4\Rightarrow4-2xy=4\Rightarrow2xy=0\Rightarrow xy=0\)

Khi đó ta có:\(x^5y=xy^5=xy\left(x^4-y^4\right)=0\)

18 tháng 7 2015

Vt = (x - y)^2 + 4xy = x^2 -2xy + y^2 + 4xy = x^2 +2xy+ y^2 = ( x+y)^2 = VP 

=> ĐPCM 

b, (x + y)^2 = ( x - y)^2 + 4xy = 5^2 + 4.3 = 25 + 12 = 37

18 tháng 7 2015

VT là vế trái 

Vp là vế phải 

DPCM là điều phải chứng minh