K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1.2+2.3+3.4+.............+2019.2020

3A=1.2.3+2.3.3+3.4.3+........................+2019.2020.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+..............+2019.2020.(2021-2018)

3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+.............-2018.2019.2020+2019.2020.2021

3A=2019.2020.2021

A=\(\frac{2019.2020.2021}{3}\)

A=2747468660

Vậy A=2747468660

Chúc bn học tốt

21 tháng 1 2020

\(A=1.2+2.3+3.4+.......+2019.2020\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+......+2019.2020.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.........+2019.2020.\left(2021-2018\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.......+2019.2020.2021-2018.2019.2020\)

\(=2019.2020.2021\)

\(\Rightarrow A=\frac{3A}{3}=\frac{2019.2020.2021}{3}=2747468660\)

Vậy \(A=2747468660\)

21 tháng 1 2020

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2019.2020

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2019.2020.3

           = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 2019.2020.(2021 - 2018) 

           = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 2019.2020.2021 - 2018.2019.2020

           = 2019.2020.2021

=> A = 2019.2020.2021 : 3 = 2 747 468 660

18 tháng 2 2020

\(C=1-2+2^2-2^3+...-2^{2011}+2^{2012}\)

\(\Rightarrow2C=2-2^2+2^3-2^4+...-2^{2012}+2^{2013}\)

\(\Rightarrow3C=1+2^{2013}\)

\(\Rightarrow C=\frac{1+2^{2013}}{3}\)

Vậy 

18 tháng 2 2020

\(D=-2+2^2-2^3+2^4-...-2^{2019}+2^{2020}\)

\(\Rightarrow-2D=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)

\(\Rightarrow-3D=-2^{2021}+2\)

\(\Leftrightarrow D=\frac{2^{2021}-2}{3}\)

21 tháng 5 2020

Ta có: 

n = \(2^{2020}-2^{2019}-2^{2018}-...-2-1\)

=> 2n = \(2^{2021}-2^{2020}-2^{2019}-2^{2018}-...-2^2-2\)

=> 2n - n = \(2^{2021}-2^{2020}-2^{2020}+1\)

=> \(n=2^{2021}-2.2^{2020}+1=1\)

=> \(A=2018.1-2019.1+2020.1=2019\)

26 tháng 5 2020

Thanks nguyễn linh chi nha

13 tháng 3 2020

+) \(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2019\cdot2020}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2019}-\frac{1}{2010}\)

\(M=1-\frac{1}{2010}=\frac{2009}{2010}\)

Vậy M=\(\frac{2009}{2010}\)

+) Đặt A=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{50}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{49}{50}\)

\(A=\frac{1\cdot2\cdot\cdot\cdot\cdot49}{2\cdot3\cdot\cdot\cdot\cdot50}=\frac{1}{50}\)

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

5 tháng 12 2019

                                                     Bài giải

a) Không tìm được GTLN

Tìm GTNN :

Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)

Vậy GTNN của \(\left|x-2\right|+2019\) là 2019

b,  GTLN :

Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)

GTNN không tìm được

c, Quên cách làm rồi !

28 tháng 2 2020

a) A= |x+2| + 2019

Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN

Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x

nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x

Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019 

Khi đó: |x+2|=0

=>         x+2 =0

=>         x=-2

Vậy biểu thức A đạt GTNN là 2019 khi x= -2

b) B= 2018 - |x+1|

Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN

Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018

Khi đó: |x+1| =0

=>         x+1  =0

=>         x=-1

Vậy biểu thức B đạt GTLN là 2018 khi x =-1

c) C = |x-3| + |y-2| +2020

Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN 

Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x

và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y

=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y

=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y

Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020 

Khi đó: |x-3|=0 và |y-2|=0

=>         x-3=0 và   y-2=0

=>         x=3    và   y=2

Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2

6 tháng 6 2019

\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)

\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)