\(1^2-2^2+3^2-4^2+.....+99^2-100^2+101^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

\(1^2-2^2+3^2-4^2+.................+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+........+\left(-199\right)+10201\)

\(=\frac{50.\left[\left(-199\right)+\left(-3\right)\right]}{2}+10201\)

\(=\left(-5050\right)+10201\)

\(=5151\)

\(1^2-2^2+3^2-4^2+...+99^2-100^2+101^2\)

\(=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+-199+101^2\)

\(=\frac{50\left(-199+\left(-3\right)\right)}{2}+10201\)

\(=-5050+10201\)

\(=5151\)

10 tháng 8 2017

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(99^2-100^2\right)+101^2\)\(=-\left(3+7+...+199\right)+101^2=-\frac{\left(3+199\right).50}{2}+101^2=5151\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Ta có:

\(A=1^2-2^2+3^2-4^2+....+99^2-100^2+101^2\)

\(\Leftrightarrow A=(1^2-2^2)+(3^2-4^2)+....+(99^2-100^2)+101^2\)

\(\Leftrightarrow A=(-1)(1+2)+(-1)(3+4)+....+(-1)(99+100)+101^2\)

\(\Leftrightarrow A=-(1+2+.....+99+100)+101^2\)

\(\Leftrightarrow A=-\frac{100(100+1)}{2}+101^2=101^2-50.101=101.51=5151\)

Vậy \(A=5151\)

19 tháng 8 2020

a) Ta có:

\(A\left(x\right)=x^3-30x^2-31x+1\)

\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)

\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)

\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)

\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)

+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:

\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)

\(A\left(x\right)=0.992+1\)

\(A\left(x\right)=0+1\)

\(A\left(x\right)=1.\)

Vậy giá trị của biểu thức \(A\left(x\right)\)\(1\) tại \(x=31.\)

28 tháng 9 2015

Q=(100-99)(100+99)+.....(2-1)(2+1)

Q=100+99+.........+2+1=5050

 

8 tháng 12 2017

\(1^2-2^2+3^2-4^2+...-100^2+101^2\)

\(\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)\)\(+...+\left(99-100\right).\left(99+100\right)+101^2\)

\(-3-7-11-...-199+101^2\)

\(101^2-\left(3+7+11+...+199\right)\)

Ta de thay :(3+7+11+ . . .+199) la 1 cap so cong co d=4 ,n=50

\(101^2-\left(199+3\right)\cdot50:2\)

\(=5151\)

21 tháng 6 2019

#)Giải :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 

=>2B = 2101 - 2100 + 299 - 298 + ... + 23 - 22

=>2B + B = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )

=>3B = 2201 - 2

=>B = 2201 - 2 / 3

21 tháng 6 2019

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow2B+B=2^{101}-2^2\)

\(\Rightarrow3B=2^{101}-2^2\)

\(\Rightarrow B=\frac{2^{101}-2^2}{3}\)

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

6 tháng 11 2016

P=5050