K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)

\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)

\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)

\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)

\(=\frac{2x+1}{x-3}\)

b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)

thay \(x=-\frac{3}{2}\)  vào P tâ đc:   \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)

c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)

\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)

\(\Leftrightarrow4x+2=x^2-3x\)

\(\Leftrightarrow x^2-7x-2=0\)

\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)

bạn tự giải nốt nhé!!

d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)

\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

bạn tự làm nốt nhé

9 tháng 3 2022

a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)

\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)

b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)

21 tháng 10 2021

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)

\(=x^2-8x+16-x^2-8x-16-16x+32\)

\(=-32x+32\)

Biểu thức phụ thuộc vào giá trị của biến

21 tháng 10 2021

b) \(\left(x-3\right)^3-\left(x+3\right)^3+12\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+9x^2+27x+27\right)+12x^2-12\)

\(=-6x^2-66\)

Biểu thức này phụ thuộc vào giá trị của biến

22 tháng 7 2019

a) \(8-\left|3x-5\right|=-14\) 

\(\Rightarrow\left|3x-5\right|=22\)

\(\Rightarrow TH1:3x-5=22\Rightarrow x=9\)

\(TH2:3x-5=-22\Rightarrow x=\frac{-17}{3}\)  

Vậy......

mấy câu kia tương  tự 

5 tháng 8 2019

hhhhh

17 tháng 7 2019

2: a) \(x^2-6x+2018\)

\(=\left(x^2-6x+9\right)+2009\)

\(=\left(x-3\right)^2+2009\)

\(\left(x-3\right)^2\ge0\forall x\) ; \(2009>0\) nên \(\left(x-3\right)^2+2009>0\forall x\)

Hay \(x^2-6x+2018>0\forall x\) \(\left(dpcm\right)\)

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left[\left(x^2-4x+4\right)+1\right]\)

\(=-\left(x-2\right)^2-1\)

\(\left(x-2\right)^2\ge0\forall x\) nên \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\)

Hay \(4x-x^2-5< 0\forall x\) \(\left(dpcm\right)\)

17 tháng 7 2019

Bài 3:

\(A=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Đẳng thức xảy ra khi x = 3/2

\(B=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+1\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = 1/2 y = -3

27 tháng 6 2018

Mk xin lỗi nha, câu c sai đề

c) (x+6)4 + (x+8)4 = 272

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

22 tháng 3 2020

$a)\dfrac{3{{x}^{2}}+7x-10}{x}=0$

ĐK: $x\ne 0$

$\begin{align}

& Pt\Leftrightarrow 3{{x}^{2}}-3x+10x-10=0 \\

& \Leftrightarrow 3x\left( x-1 \right)+10\left( x-1 \right)=0 \\

& \Leftrightarrow \left( x-1 \right)\left( 3x+10 \right)=0 \\

& \Leftrightarrow \left[ \begin{align}

& x-1=0 \\

& 3x+10=0 \\

\end{align} \right.\Leftrightarrow \left[ \begin{align}

& x=1 \\

& x=-\dfrac{10}{3} \\

\end{align} \right.\left( tm \right) \\

\end{align}$

$b)\dfrac{4x-17}{2{{x}^{2}}+1}=0$

ĐK: $x\in \mathbb{R}$

$Pt\Leftrightarrow 4x-17=0\Rightarrow x=\dfrac{17}{4}\left( tm \right)$

22 tháng 3 2020
https://i.imgur.com/JzprAuk.jpg
30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b