Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
\(\dfrac{A}{2}=\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(\dfrac{A}{2}=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{1}{6}-\dfrac{1}{61}\)
\(\dfrac{A}{2}=\dfrac{56}{305}\)
\(\Rightarrow A=\dfrac{112}{305}\)
a,
\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)
b,
\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)
c,
\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)
Đặt:
\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)
\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)
\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)
\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)
\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)
\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)
a) \(\dfrac{4^2.4^3}{(2^2)^5}=\dfrac{4^2.4^3}{4^5}=\dfrac{4^3}{4^3}=1\)
b) = 1215
c) = \(\dfrac{3}{16}\)
d) = (-27)
\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{125}{100}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{5}{4}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{85}{36}+\dfrac{79}{63}\right)\)
\(=-5,13:\dfrac{57}{14}=-5,13:\dfrac{15}{57}\)
\(=\dfrac{-71,82}{57}=1,26\)
Vậy \(A=1,26\)
\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
\(=\left(\dfrac{10}{3}.1,9+19,5:\dfrac{13}{3}\right).\left(\dfrac{62-12}{75}\right)\)
\(=\left(\dfrac{19}{3}+\dfrac{58,5}{13}\right).\dfrac{50}{75}\)
\(=\left(\dfrac{19}{3}+4,5\right).\dfrac{2}{3}\)
\(=\dfrac{32,5}{3}.\dfrac{2}{3}=\dfrac{65}{9}=7\dfrac{2}{9}\)
Vậy \(B=7\dfrac{2}{9}\)
a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)
b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)
c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)
\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)
\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)
a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)
\(\Leftrightarrow x=1631,5\)
Vậy ..................
Sau khi thực hiện phép tính ta được kết quả các giá trị:
\(A=\dfrac{1}{3}\) \(B=-5\dfrac{5}{12}\) \(C=-0,22\)
Sắp xếp: \(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\) tức là \(B< C< A\)
Khi tính xong giá trị biểu thức A , B và C ta được kết quả như sau :
\(A=\dfrac{1}{3}\) ; \(B=-5\dfrac{5}{12}\); \(C=-0,22\)
Sắp xếp : \(B< C< A\)\(\left(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\right)\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
\(A=\left(3,1-2,5\right)-\left(-2,5+3,1\right)\)
\(A=3,1-2,5+2,5-3,1\)
\(A=\left(3,1-3,1\right)-\left(2,5-2,5\right)\)
\(A=0-0\)
\(A=0\)
\(B=\left(5,3-2,8\right)-\left(4+5,3\right)\)
\(B=5,3-2,8-4-5,3\)
\(B=\left(5,3-5,3\right)-\left(2,8+4\right)\\ B=0-6,8\\ B=-6,8\)
\(\frac{112}{305}\)nha
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)