K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

6 tháng 4 2017

Mà bài này hình như học ở lớp 7 rồi!lolang

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

21 tháng 6 2021

a) P = \(x^2+3x+y^2-3y-2xy+90\)

\(\left(x-y\right)^2+3\left(x-y\right)+90\)

\(5^2+3.5+90=130\)

b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)

\(4x^2+9y^2+12xy-12x-18y+118\)

\(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)

\(\left(-7\right)^2-6.\left(-7\right)+118=209\)

21 tháng 6 2021

Các bạn ơi cho tui hỏi câu này : noise in / kept / night / the / awake / city / at / the / him / .

Giúp mình với , cảm ơn.

 

26 tháng 11 2018

11 tháng 7 2016

\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)

     \(=1\)

\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)

Ta có : \(x+y-2=0\Rightarrow x+2=-y\)

\(\Rightarrow N=-x^2y-xy^2+2xy+2\)

     \(N=-xy\left(x+y-2\right)+2=2\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)

9 tháng 7 2019

mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2

9 tháng 7 2019

Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)

*Với x=2;y=5 =>P=-102

*Với x=-5;y=-2 =>P=45

3 tháng 10 2018

\(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3\)

\(=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-(x^2+xy-2x)+3\)

\(=(x+y-2)(x^3+x^2y-x)+3=3\)

Do \(x+y-2=0\Rightarrow (x+y-2)(x^3+x^2y-x)=0\)

\(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)

\(=\left(x+y-2\right)\left(x^3+x^2y-x\right)+3=3\)

Do \(x+y-2=0\Rightarrow\left(x+y-2\right)\left(x^3+x^2y-x\right)=0\)

k nhé