Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=\dfrac{7}{8}+\dfrac{11}{24}+\dfrac{5}{8}+\dfrac{23}{24}+\dfrac{11}{8}+\dfrac{13}{24}\\ \Rightarrow G=\left(\dfrac{7}{8}+\dfrac{5}{8}+\dfrac{11}{8}\right)+\left(\dfrac{11}{24}+\dfrac{23}{24}+\dfrac{13}{24}\right)\\ \Rightarrow G=\dfrac{23}{8}+\dfrac{47}{24}\\ \Rightarrow G=\dfrac{69}{24}+\dfrac{47}{24}\\ \Rightarrow G=\dfrac{116}{24}\\ \Rightarrow G=\dfrac{29}{6}\)
Lời giải:
$1+2+3+....+25$
$=(1+25)+(2+24)+(3+23)+(4+22)+(5+21)+(6+20)+(7+19)+(8+18)+(9+17)+(10+16)+(11+15)+(12+14)+13$
$=\underbrace{26+26+26+...+26}_{12}+13$
$=26\times 12+13=325$
a) ( 72 - 8x9 ) : ( 20 + 21 + 22 + 23 + 24 + 25 )
= ( 72 - 72 ) : ( 20 + 21 + 22 + 23 + 24 + 25 )
= 0 : ( 20 + 21 + 22 + 23 + 24 + 25 )
= 0
b) ( 500 x 9 - 250 x 18 ) x ( 1 + 2 + 3 + ... + 9 )
= ( 250 x 2 x 9 - 250 x 18 ) x ( 1 + 2 + 3 + ... + 9 )
= ( 250 x 18 - 250 x 18 ) x ( 1 + 2 + 3 + ... + 9 )
= 0 x ( 1 + 2 + 3 + ... + 9 )
= 0
c ) ( 11 + 13 + 15 + ... + 19 ) x ( 6 x 8 - 48 )
= ( 11 + 13 + 15 + ... + 19 ) x ( 48 - 48 )
= ( 11 + 13 + 15 + ... + 19 ) x 0
= 0
a) ( 72 - 8x9 ) : ( 20 + 21 + 22 + 23 + 24 + 25 )
= ( 72 - 72 ) : ( 20 + 21 + 22 + 23 + 24 + 25 )
= 0 : ( 20 + 21 + 22 + 23 + 24 + 25 )
= 0
Lời giải:
a.
$\frac{5}{15}-\frac{1}{6}\times \frac{2}{5}=\frac{5}{15}-\frac{1}{15}=\frac{4}{15}$
b.
$\frac{8}{24}+\frac{3}{4}:\frac{1}{8}=\frac{1}{3}+6=\frac{19}{3}$
c.
$\frac{1}{7}: \frac{2}{8}-\frac{1}{7}=\frac{1}{7}\times 4-\frac{1}{7}$
$=\frac{1}{7}\times (4-1)=\frac{1}{7}\times 3=\frac{3}{7}$
\(G=\dfrac{9}{8}+\dfrac{23}{24}+\dfrac{1}{8}+\dfrac{17}{24}+\dfrac{13}{8}+\dfrac{19}{24}\\ \Rightarrow G=\left(\dfrac{9}{8}+\dfrac{1}{8}+\dfrac{13}{8}\right)+\left(\dfrac{23}{24}+\dfrac{17}{24}+\dfrac{19}{24}\right)\\ \Rightarrow G=\dfrac{23}{8}+\dfrac{59}{24}\\ \Rightarrow G=\dfrac{69}{24}+\dfrac{59}{24}\\ \Rightarrow G=\dfrac{128}{24}\\ \Rightarrow G=\dfrac{16}{3}\)
\(=\left(\dfrac{9}{8}+\dfrac{1}{8}+\dfrac{13}{8}\right)+\left(\dfrac{23}{24}+\dfrac{17}{24}+\dfrac{19}{24}\right)\)
\(=\dfrac{23}{8}+\dfrac{59}{24}\)
\(=\dfrac{16}{3}\)