K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

a, Với x = 3 và y = -2 ta có:

\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)

\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)

\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)

\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)

\(A=\dfrac{5}{6}\)

 

 Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)

\(B=\left|5\right|+\left|-7\right|\)

\(B=5+7=12\)

Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhévui

 
20 tháng 9 2021

E cảm ơn cj

a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x

=> ( x-2)2 +2023 \(\ge\) 2023

Vậy ...

Dấu bằng xảy ra khi x-2 = 0

b. (x-3)2+(y-2)2-2018

Ta có: \((x-3)^2 \ge0,\forall x\)

           \((y-2) ^2 \ge0,\forall y\) 

=> ( x-3)2 + ( y-2)2 \(\ge\) 0

=>  ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y 

Vậy ...

Dấu bằng xảy ra khi x-3=0

                                 y-2=0

c. ( x+1)2 +100

Ta có : ( x+1)2 \(\ge0,\forall x\) 

=> ( x+1)2+100 \(\ge\) 100

Vậy ...

Dấu bằng xảy ra khi x+1=0

26 tháng 5 2022

\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)

\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)

Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)

\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)

12 tháng 7 2015

\(\left(x^2-1\right)\left(x^2-2\right)...\left(x^2-2013\right)\)

Thay x = 10 vào biểu thức, ta được:

\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...\left(10^2-100\right)....\left(10^2-2013\right)\)

\(\Rightarrow\left(10^2-1\right)\left(10^2-2\right)...0....\left(10^2-2013\right)=0\) (vì bao nhiêu nhân 0 cũng bằng 0)

28 tháng 1 2022

\(x+y+1=0\\ \Leftrightarrow x+y=-1\)

Thay x+y=-1 vào C ta có:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)

\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)

\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)

\(\Rightarrow C=0+0+1\)

\(\Rightarrow C=1\)

28 tháng 1 2022

\(x+y+1=0\) =>\(x+y=-1\)

- Thay \(x+y=-1\) vào C ta được:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)=1