\(A=2^{10}-2^9-2^8-2^7-...-2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

A=1024-512-256-128-64-32-16-8-4-2-1

A=1

3 tháng 8 2019

hok tốt

3 tháng 10 2017

=24 nhé

3 tháng 10 2017

Bạn kiểm tra xem ghi đúng đề chưa

21 tháng 12 2016

điều kiện xác định của phân thức là x khác 0 và x khác -3

nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6

21 tháng 12 2016

Mai Thành Đạt làm sai rồi không đọc kĩ đề à

15 tháng 11 2018

\(x^2-9x+1=0\Rightarrow x^2+1=9x\)

\(A=\frac{x^4+x^2+1}{5x^2}=\frac{x^4+2x^2+1-x^2}{5x^2}=\frac{\left(x^2+1\right)^2-x^2}{5x^2}=\frac{\left(x^2-x+1\right)\left(x^2+x+1\right)}{5x^2}\)

\(=\frac{\left(9x-x\right)\left(9x+x\right)}{5x^2}=\frac{80x^2}{5x^2}=16\left(x\ne0\right)\)

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2

7 tháng 7 2019

Ta có:

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2+2ab+2bc+2ca=0\)(theo bài ra a^2 + b^2 + c^2 = 2)

\(\Leftrightarrow ab+bc+ca=-1\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=-1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)

Vậy:\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=4-2-2\)

28 tháng 8 2016

Ta có : \(9x^2+4x^2=20xy\)

\(\Leftrightarrow\begin{cases}9x^2-12xy+4y^2=8xy\\9x^2+12xy+4y^2=32xy\end{cases}\)

\(\Leftrightarrow\begin{cases}\left(3x-2y\right)^2=8xy\\\left(3x+2y\right)^2=32xy\end{cases}\)

\(A^2=\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{2}\)

28 tháng 2 2017

đúng