Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m^2-n^2\right)\left(m+n\right)\)
Thay \(m=-2017;n=2017\) vào A , ta được :
\(A=\left[\left(-2017\right)^2-2017^2\right]\left(-2017+2017\right)=0\)
Vậy \(A=0\) tại \(m=-2017;n=2017\)
\(B=x^3-3x^2-x\left(3-x\right)\)
\(=x^2\left(x-3\right)+x\left(x-3\right)\)
\(=\left(x^2+x\right)\left(x-3\right)\)
\(=x\left(x+1\right)\left(x-3\right)\)
Thay \(x=13\) vào B , ta được :
\(13\left(13+1\right)\left(13-3\right)=13.14.10=1820\)
Vậy \(B=1820\) tại \(x=13\)
Bài 1:
Nếu $n$ không chia hết cho $7$ thì:
\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)
b)
Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)
Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)
Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)
Tóm lại, $A$ chia hết cho $2$
---------
Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)
Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:
\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)
Vậy \(A\vdots 3\)
-----------------
Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$
Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)
+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)
+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$
\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)
Tóm lại $A\vdots 5$
Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)
Ta có đpcm.
1/ a/ ta có:
m^4 ≥ 0 ; m^2 ≥ 0; m^4 ≥m^2 => m^4 - m^2 + 1 ≥ 0 (với mọi m)
b/ để 1 - 3/(p^2+1) nhỏ nhất thì 3/(p^2+1) nhỏ nhất và 3/(p^2+1) > 0 => p^2 + 1 là ước > 0 của 3
đặt A = 1 - 3/(p^2+1)
=> *) p^2+1 = 3 <=> p^2 = 2 <=> p = \(\pm\)√2 => A = 0
*) p^2 + 1 = 1 <=> p = 0 => A = -2
Vậy GTNN A = -2 khi p=0
n^2 (n-p) = |m|
|m| ≥ 0; n^2 ≥ 0
=> n - p ≥ 0
=> n ≥ p ; theo đề phải có 1 số dương, 1 số 0, 1 số âm=>n >p
*)Nếu m = 0 => n^2 (n-p) = 0
=> n^2 = 0 => n = m=0 vô lí (loại)
hoặc n - p =0 => n = p vô lí (loại)
*) Nếu m là 1 số dương:
=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số âm (vô lí)
*) Nếu m là 1 số âm:
=> n^2 ( n-p) > 0 => n # 0 => p = 0 => n là số dương (nhận)
Vậy m là số âm, n là số dương, p = 0
a: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
b: \(N=n^3-3n^2-n\left(3-n\right)\)
\(=n^2\left(n-3\right)+n\left(n-3\right)\)
\(=n\left(n-3\right)\left(n+1\right)\)
\(=13\cdot10\cdot14=1820\)
a/ Chia đa thức một biến bình thường. Ta sẽ có thương là n2 - 1, số dư là 7
Để n3 +n2-n+5 chia hết cho n+2
thì 7 chia hết cho n+2
\(\Rightarrow\)n+2\(_{ }\in\)Ư(7)
\(\Rightarrow\)n+2\(\in\)\(\left\{1,-1,7,-7\right\}\)
\(\Rightarrow n\in\left\{-1,-3,5,-9\right\}\)
Câu b tương tự
\(\frac{m^3-n^3-3mn\left(m-2\right)}{m^2+n^2-2mn}\)
\(=\frac{m^3-n^3-3m^2n+3mn^2}{m^2-2mn+n^2}\)
\(=\frac{m^3-3m^2n-3mn^2-n^3}{m^2-2mn+n^2}=\frac{\left(m-n\right)^3}{\left(m-n\right)^2}=m-n\)
Thay m = 6,75 , n = -3,25 ta có :
6,75 - ( - 3,25 ) = 6,75 + 3,25 = 10
Vậy giá trị biểu thức trên bằng 10 khi m = 6,75 ; n = -3,25
máu biếng tới tận não:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)
\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Mà a,b,c >0
=> a = b = c
=> S = 3
\(\)
a) M = 0. b) N = 1820.