Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/1x2 + 2/2x3 +...+ 2/9x10
=2x(1-1/2+1/2-1/3+...+1/9-1/10)
=2x(1-1/10)
=2 x 9/10
=9/5
Đặt A=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{9.10}\)
\(\frac{A}{2}\)=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\frac{A}{2}\)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{A}{2}\)=\(1-\frac{1}{10}\)
\(\frac{A}{2}\)=\(\frac{99}{10}\)
A=\(\frac{9}{20}\)
Vậy A=\(\frac{9}{20}\)
B= (1-1/2). ( 1-1/3).(1-1/4).(1-1/5)....(1-1/2004)
B= 1/2. 2/3 . 3/4. 4/5....2003/2004
B= 1/2004
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot....\cdot\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot....\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot2002\cdot2003}{3\cdot4\cdot5\cdot...\cdot2003\cdot2004}=\frac{1}{1002}\)
\(5\frac{3}{4}:3+2\frac{1}{4}\times\frac{1}{3}-\frac{3}{8}\)
\(=\frac{23}{4}\times\frac{1}{3}+\frac{9}{4}\times\frac{1}{3}-\frac{3}{8}\)
\(=\left(\frac{23}{4}+\frac{9}{4}\right)\times\frac{1}{3}-\frac{3}{8}\)
\(=8\times\frac{1}{3}-\frac{3}{8}\)
\(=\frac{8}{3}-\frac{3}{8}\)
\(=\frac{55}{24}\)
2) \(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{99\times101}+\frac{3}{101\times103}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{101\times103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\frac{101}{103}\)
\(=\frac{303}{206}\)
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49