Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Câu 1 :
X : 0,25 + X + X : 0,2 = 32
X x 4 + X + X x 5 = 32
X x ( 4 + 1 + 5 ) = 32
X x 10 = 32
X = 32 : 10
X = 3,2
10 x 4 - 5 + 4
= 40 - 5 + 4
= 35 + 4
=39
Ta có: \(\dfrac{x}{y}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)
Ta có: \(H=\dfrac{2x-3y}{x-5y}\)
\(=\dfrac{2\cdot3k-3\cdot2k}{3k-5\cdot2k}=\dfrac{6k-6k}{3k-10k}=0\)
Ta có: xy=32xy=32
⇔x3=y2⇔x3=y2
Đặt x3=y2=kx3=y2=k
⇔{x=3ky=2k⇔{x=3ky=2k
Ta có: H=2x−3yx−5yH=2x−3yx−5y
=2⋅3k−3⋅2k3k−5⋅2k=6k−6k3k−10k=0
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
= 0
k nha
Violympic không bao giờ cho đề v :)