Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}=\dfrac{45}{10}=4,5\\ b,=\dfrac{4}{5}\times\left(\dfrac{3}{8}+\dfrac{5}{8}-\dfrac{7}{8}\right)\times2=\dfrac{8}{5}\times\dfrac{1}{8}=\dfrac{1}{5}=0,2\)
a) Rút gọn các phân số về tối giản, ta được:
\(\dfrac{1}{10}\)+\(\dfrac{2}{10}\)+\(\dfrac{3}{10}\)+\(\dfrac{4}{10}\)+\(\dfrac{5}{10}\)+\(\dfrac{6}{10}\)+\(\dfrac{7}{10}\)+\(\dfrac{8}{10}\)+\(\dfrac{9}{10}\)= kết quả là \(\dfrac{45}{10}\) ra số thập phân = \(4,5\)
b) \(\dfrac{4}{5}\) \(\times\) \(\left(\dfrac{3}{8}+\dfrac{5}{8}-\dfrac{7}{8}\right)\) = \(\dfrac{4}{5}\times\dfrac{1}{8}\) = \(\dfrac{4}{40}=\dfrac{1}{10}\)\(\div\dfrac{1}{2}\)
= \(\dfrac{2}{10}=0,2\)
0,1 0,5 0,3du3 0,2 du8 0,2 0,1 du24 0,1du21 0,1 du16 0,1 du9
Mình xin lỗi làm thiếu phân số cuối cùng
Bài đúng là thế này xin lỗi nhé. Kết quả chính xác là 4,5
\(=\frac{1}{10}+\frac{2.2}{2.10}+\frac{3.3}{3.10}+\frac{4.4}{4.10}+\frac{5.5}{5.10}+\frac{6.6}{6.10}+\frac{7.7}{7.10}+\frac{8.8}{8.10}+\frac{9.9}{9.10}=\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+\frac{5}{10}+\frac{6}{10}+\frac{7}{10}+\frac{8}{10}+\frac{9}{10}=\)
\(=\frac{1+2+3+4+5+6+7+8+9}{10}=\frac{45}{10}=4,5\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)