Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{99}{98}\times\frac{100}{99}\)
Vì phép nhân có thể rút gọn được
\(\Rightarrow A=\frac{100}{2}=50\)
Vậy A = 50
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
Vậy \(A=50\).
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)
\(\Leftrightarrow A=\frac{100}{2}=50\)
\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)
\(=0\)
Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
câu 1
A=-1
câu 2
\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\left(x+1\right).\left(x+1\right)=16\)
\(\left(x+1\right)^2=16\)
\(\Rightarrow x+1=4\)
vậy x=3
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)
\(\Rightarrow A=\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\frac{n^2-1}{n^2}\)
\(\Rightarrow A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)
\(\Rightarrow A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\cdot\cdot\left[\left(n-1\right)\left(n+1\right)\right]}{\left(2\cdot2\right)\cdot\left(3\cdot3\right)\cdot\cdot\cdot\left(n\cdot n\right)}\)
\(\Rightarrow A=\frac{\left[1\cdot2\cdot\cdot\cdot\cdot\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot\cdot\cdot\cdot\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}\)
\(\Rightarrow A=\frac{1\cdot\left(n+1\right)}{n\cdot2}\)
\(\Rightarrow A=\frac{n+1}{2n}\)
A=(1-1/2^2)(1-1/3^2).....(1-1/n^2)
A=1(1/2^2-1/3^2-...-1/n^2)
......
xin lỗi bạn nha mình phải tắt máy rồi bạn cố gắng suy nghĩ tiếp nha