\(5.x^3-3.x^2-x\) với x=\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

a) thay x=\(\frac{-1}{3}\) vào biểu thức A ta có:

A=\(5.\left(\frac{-1}{3}\right)^3-3.\left(\frac{-1}{3}\right)^2-\frac{1}{3}\)

=\(5.\frac{-1}{27}-3.\frac{1}{9}+\frac{1}{3}\)

=\(\frac{-5}{27}-\frac{3}{9}+\frac{1}{3}\) 

=\(\frac{-14}{27}+\frac{1}{3}\)

=\(\frac{-5}{27}\)

25 tháng 7 2016

a) Thay giá trị x vào biểu thức , ta có :

\(A=5.\left(-\frac{1}{3}\right)^3-3.\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)

\(A=5.\left(-\frac{1}{27}\right)-3.\frac{1}{9}+\frac{1}{3}\)

\(A=-\frac{5}{27}-\frac{1}{3}+\frac{1}{3}\)

\(A=-\frac{14}{27}+\frac{1}{3}\)

\(A=-\frac{5}{27}\)

b) Thay giá trị x vào biểu thức , ta có :

\(3.\left(-\frac{2}{3}\right)^2+5.\left(-\frac{2}{3}\right)^3\)

\(=3.\frac{4}{9}+5.\left(-\frac{8}{27}\right)\)

\(=\frac{4}{3}+\left(-\frac{40}{27}\right)\)

\(=-\frac{4}{27}\)

25 tháng 7 2016

a) Thay x=\(-\frac{1}{3}\) vào A ta được

 A=\(5\cdot\left(-\frac{1}{3}\right)^3-3\cdot\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)

   \(=5\cdot\left(-\frac{1}{27}\right)-3\cdot\frac{1}{9}+\frac{1}{3}\)

   \(=-\frac{5}{27}\)

b) \(3x^2+5x^3=x^2\left(3+5x\right)\)

Thay x=\(\frac{-2}{3}\) vào biểu thức ta có

         \(x^2\left(3+5x\right)=\left(-\frac{2}{3}\right)^2\cdot\left(3+5\cdot\frac{-2}{3}\right)=\frac{4}{9}\cdot\frac{-1}{3}=-\frac{4}{27}\)

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...

5 tháng 5 2017

Để A có giá trị nguyên

thì 3\(⋮\)(x-1)

mà xeZ nên x-1eZ

x-1e{3;-3}

xe{4;-2}

1 tháng 7 2019

a) \(2x-\frac{2}{3}-7x=\frac{3}{2}-1\\ 2x-7x-\frac{2}{3}=\frac{1}{2}\\ -5x=\frac{1}{2}+\frac{2}{3}\\ -5x=\frac{7}{6}\\ x=\frac{7}{6}:\left(-5\right)\\ x=\frac{-7}{30}\)Vậy \(x=\frac{-7}{30}\)

b) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\\ \frac{3}{2}x-\frac{1}{3}x=\frac{2}{5}-\frac{1}{4}\\ \frac{7}{6}x=\frac{3}{20}\\ x=\frac{3}{20}:\frac{7}{6}\\ x=\frac{9}{70}\)Vậy \(x=\frac{9}{70}\)

c) \(\frac{2}{3}-\frac{5}{3}x=\frac{7}{10}x+\frac{5}{6}\\ \frac{2}{3}-\frac{5}{6}=\frac{7}{10}x+\frac{5}{3}x\\ \frac{-1}{6}=\frac{71}{30}x\\ x=\frac{-1}{6}:\frac{71}{30}\\ x=\frac{-5}{71}\)Vậy \(x=\frac{-5}{71}\)

d) \(2x-\frac{1}{4}=\frac{5}{6}-\frac{1}{2}x\\ 2x+\frac{1}{2}x=\frac{5}{6}+\frac{1}{4}\\ \frac{5}{2}x=\frac{13}{12}\\ x=\frac{13}{12}:\frac{5}{2}\\ x=\frac{13}{30}\)Vậy \(x=\frac{13}{30}\)

e) \(3x-\frac{5}{3}=x-\frac{1}{4}\\ 3x-x=\frac{5}{3}-\frac{1}{4}\\ 2x=\frac{17}{12}\\ x=\frac{17}{12}:2\\ x=\frac{17}{24}\)Vậy \(x=\frac{17}{24}\)

1 tháng 7 2019

Èo, chăm thế? Chăm hơn cả mik cơ, gần 11 h rồi onl thì thấy bài được bạn HISI làm hết rồi :((