Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2-2y^2-xy=0\)
<=>\(\left(x^2-y^2\right)-\left(y^2-xy\right)=0\)
<=>\(\left(x-y\right)\left(x-y\right)-y\left(x+y\right)=0\)
<=> \(\left(x-y\right)\left(x-2y\right)=0\)
<=> x - 2y = 0 ( do x+y khác 0 )
<=> x =2y
Thay vào đề bài ta có
Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Từ \(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\)
\(\Rightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-y\right)-y.\left(x-y\right)=0\)
\(\Rightarrow\left(x-y\right).\left(x-2y\right)=0\)
\(\Rightarrow x=2y\)
Thay vào đã dc:\(Q=\frac{1}{3}\)
ta có: \(\frac{5x+3y}{x+2y}=4\Rightarrow5x+3y=4\left(x+2y\right)\Leftrightarrow5x+3y=4x+8y\)
\(\Leftrightarrow5x-4x=8y-3y\Rightarrow x=5y\)
thay \(x=5y\) vào A, ta có: \(A=\frac{25y^2-y^2}{25y^2+y^2}=\frac{\left(25-1\right)y^2}{\left(25+1\right)y^2}=\frac{24y^2}{26y^2}=\frac{12}{13}\)
Học tốt!
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
Ta có:\(x^2-2y^2=xy\)
\(\Rightarrow x^2-xy-2y^2=0\)
\(\Rightarrow x^2+xy-2xy-2y^2=0\)
\(\Rightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
Thay vào Q,ta có:
\(Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)