\(\left(7+4\sqrt{3}\right)^{2017}\)\(\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

7+4√3

29 tháng 3 2021

\(P=\left[\left(7+4\sqrt{3}\right)\left(4\sqrt{3}-7\right)\right]^{2016}\cdot\left(7+4\sqrt{3}\right)=\left(-1\right)^{2016}\cdot\left(7+4\sqrt{3}\right)=7+4\sqrt{3}\)

NV
12 tháng 2 2020

a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)

\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)

\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)

b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)

c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)

NV
12 tháng 2 2020

d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)

\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)

e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)

f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)

g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)

22 tháng 10 2020

Một dạng rất uen thuộc của lượng giác là tìm gtnn,ln bằng cách đặt ẩn là sinx và cosx

\(x^2+y^2-2x-4y+4=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=1\)

\(\left\{{}\begin{matrix}\sin\alpha=x-1\\\cos\alpha=y-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sin\alpha+1\\y=\cos\alpha+2\end{matrix}\right.\)

\(\Rightarrow P=\left(\sin\alpha+1\right)^2-\left(\cos\alpha+2\right)^2+2\sqrt{3}\left(\sin\alpha+1\right)\left(\cos\alpha+2\right)-2\left(\sin\alpha+1\right)-4\sqrt{3}\left(\sin\alpha+1\right)-4\left(\cos\alpha+2\right)-2\sqrt{3}\left(\cos\alpha+2\right)-3+4\sqrt{3}\)

\(\Leftrightarrow P=\sin^2\alpha-\cos^2\alpha+2\sqrt{3}\sin\alpha\cos\alpha-16\)

Ta đưa về góc 2 alpha để dễ xét

\(\Leftrightarrow P=\frac{1-\cos2\alpha}{2}-\frac{\cos2\alpha+1}{2}+\sqrt{3}\sin2\alpha-16\)

\(\Rightarrow P=\sqrt{3}\sin2\alpha-\cos2\alpha-16\)

\(P=2\sin\left(2\alpha-\frac{\pi}{6}\right)-16\)

\(\Rightarrow2.\left(-1\right)-16\le P\le2.1-16\)

\(\Rightarrow\left\{{}\begin{matrix}P_{min}=-18;"="\Leftrightarrow2\alpha-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\\P_{max}=-14;"="\Leftrightarrow2\alpha-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bạn tự thay vô x và y để xét dấu bằng nhé

22 tháng 10 2020

thanks bro

NV
6 tháng 7 2020

\(sin3x=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}3x=-\frac{\pi}{3}+k2\pi\\3x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{4\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{7}=\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{7}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{11\pi}{56}+k\pi\\x=\frac{25\pi}{56}+k\pi\end{matrix}\right.\)

\(sin\left(4x+1\right)=\frac{3}{5}=sina\) (với góc a sao cho \(sina=\frac{3}{5}\))

\(\Rightarrow\left[{}\begin{matrix}4x+1=a+k2\pi\\4x+1=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{4}-\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{7}=x-\frac{3\pi}{7}+k2\pi\\2x+\frac{\pi}{7}=\pi-x+\frac{3\pi}{7}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{4\pi}{7}+k2\pi\\x=\frac{3\pi}{7}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)

Đặt \(\frac{1}{4}=sina\Rightarrow sin\left(4x+\frac{\pi}{7}\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{\pi}{7}=a+k2\pi\\4x+\frac{\pi}{7}=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{28}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{3\pi}{14}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
22 tháng 10 2020

1.

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\)\(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)

2.

\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)

\(\Leftrightarrow2cos^22x-cos2x=cos2x\)

\(\Leftrightarrow cos^22x-cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

NV
22 tháng 10 2020

3.

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

4.

\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)

\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)

\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)

\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)

\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

NV
15 tháng 3 2020

\(a=\lim\limits_{x\rightarrow a}\frac{\left(\sqrt{x}-\sqrt{a}\right)\left(x+\sqrt{ax}+a\right)}{\sqrt{x}-\sqrt{a}}=\lim\limits_{x\rightarrow a}\left(x+\sqrt{ax}+a\right)=3a\)

\(b=\lim\limits_{x\rightarrow1}\frac{x^{\frac{1}{n}}-1}{x^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{n}x^{\frac{1-n}{n}}}{\frac{1}{m}x^{\frac{1-m}{m}}}=\frac{\frac{1}{n}}{\frac{1}{m}}=\frac{m}{n}\)

Ta có:

\(\lim\limits_{x\rightarrow1}\frac{1-\sqrt[n]{x}}{1-x}=\lim\limits_{x\rightarrow1}\frac{1-x^{\frac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\frac{-\frac{1}{n}x^{\frac{1-n}{n}}}{-1}=\frac{1}{n}\)

\(\Rightarrow c=\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)}{1-x}.\frac{\left(1-\sqrt[3]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[4]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)}=\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}=\frac{1}{120}\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1}=\frac{1}{2}\)

NV
15 tháng 3 2020

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{1+x}+1}+\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{1+x}+1}+\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(f=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{3+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{3+\sqrt{x+7}}}{x-1}=\frac{8}{27}-\frac{1}{6}=\frac{7}{54}\)

\(g=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-1+1-\sqrt{2x-1}}{\left(x-1\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2\left(x-1\right)}{1+\sqrt{2x-1}}}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{3}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2}{1+\sqrt{2x-1}}}{x^2+x+1}=0\)

\(h=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}=\frac{\sqrt[3]{10}-\sqrt[3]{4}}{2}\)