K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

22 tháng 12 2018

2 tháng 3 2019

Chọn A.

Ta có:

1 log a b - 1 log b a = 2018   ⇔ log a b + 1 log a b = 2018 ⇔ t + 1 t = 2018  

  P = 1 log ab b - 1 log ab a = log b ab - log a ab = log b a - log a b = 1 log a b - log a b = 1 t - t

Mà ( t + 1 t ) 2 - ( 1 t - t ) 2 = 4  suy ra

P = 1 t - t = ( t + 1 t ) 2 - 4 = 2018 - 4 = 2014 .

a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)

b: Nếu a là số nguyên âm thì a<0

Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp

hay A là phân số tối giản

26 tháng 4 2019

Chọn C

18 tháng 10 2018

Chọn C

4 tháng 11 2019

Đáp án A

Đặt

a = 2018 ⇒ f x + f 1 − x = 1 a x + a + 1 a 1 − x + a = a 1 − x + a x + 2 a a x + a a 1 − x + a = 1 a

Do đó

f x + f 1 − x = 1 2018

24 tháng 4 2016

Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất 

nên /3-x/=0(vì /3-x/ luôn >=0 dấu)

     3-x=0

        x=3

24 tháng 4 2016

D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)

nên \x-2\+2=2

       \x-2\=0

       x-2=0

      x=2

        

 

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn