K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8

Cậu xem lại bài: \(\dfrac{1}{2023\times2025}\) hay \(\dfrac{1}{2023\times2024}\) ạ

cho mính sửa chỗ1/2023x2024 thành 1/2023x2025 nhoa 

cho mình xin lỗi

27 tháng 5 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\frac{8}{9}\)

\(=\frac{4}{9}\)

27 tháng 5 2019

#)Giải :

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)

\(\Rightarrow2S=1-\frac{1}{9}=\frac{8}{9}\)

\(S=\frac{8}{9}:2=\frac{4}{9}\)

             #~Will~be~Pens~#

24 tháng 7 2016

B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101

B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101

B= 1/3 - 1/101

B=98/303

( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )

24 tháng 7 2016

a, A = 1/2x3+ 1/ 3x4 + 1/4x5 + 1/5x6 + ... + 1/99x100

    A= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + 1/5 - 1/6 + ... + 1/99 -1/100

    A= 1/2 -1/100

    A= 49 / 100

27 tháng 10 2020

sửa đề câu a  và câu b  nhá  , mik nghĩ đề như này :

  \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

 \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(\frac{1}{1}-\frac{1}{215}\)

\(=\frac{214}{215}\)

b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)

    \(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)

\(A\cdot2=\frac{214}{215}\)

\(A=\frac{214}{215}:2\)

\(A=\frac{107}{215}\)

27 tháng 10 2020

@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều

31 tháng 12 2022

14,26651106

AH
Akai Haruma
Giáo viên
31 tháng 12 2022

Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$

$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$

$=1-\frac{1}{21}=\frac{20}{21}$

$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$

2 tháng 9 2021

sai đề

\(\frac{1}{1x2} +(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9} +\frac{2}{9x11})\)

\(=\frac{1}{1x2} + (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11})\)

\(=\frac{1}{1x2}+(\frac{1}{3}-\frac{1}{11})\)

\(=\frac{1}{1x2} +\frac{10}{33}\)

\(=\frac{1}{2} + \frac{10}{33} = \frac{33}{66}+\frac{20}{66}\)

\(=\frac{53}{66}\)

22 tháng 9 2015

Theo cách mk học sẽ suy ra lun

=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005

=1-1/2005

=2004/2005

4 tháng 3 2018

\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+..........+\frac{1}{97x99}\)

\(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(1-\frac{1}{3}-\frac{1}{99}\)

\(\frac{99}{99}-\frac{33}{99}-\frac{1}{99}\)

\(\frac{65}{99}\)

4 tháng 3 2018

\(\frac{1}{3}\)*5+\(\frac{1}{5}\)*7+\(\frac{1}{7}\)*9*...*\(\frac{1}{97}\)*99

=\(\frac{5}{3}\)*\(\frac{7}{5}\)*\(\frac{9}{7}\)*...*\(\frac{99}{97}\)

=\(\frac{99}{3}\)

đúng thì nha

7 tháng 2 2015

\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{999x1001}\)

\(2A=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{1001-999}{999x1001}\)

\(2A=\frac{3}{1x3}-\frac{1}{1x3}+\frac{5}{3x5}-\frac{3}{3x5}+\frac{7}{5x7}-\frac{5}{5x7}+...+\frac{1001}{999x1001}-\frac{999}{999x1001}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\)

\(2A=1-\frac{1}{1001}=\frac{1000}{1001}\)=> A = 500/1001

 

 

8 tháng 2 2015

\(\frac{500}{1001}\)!