Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(a+b).(a+1).(b+1)
Mà ab=-5\(\Rightarrow a=\frac{-5}{b}\)
\(\Rightarrow C=3.\left(-\frac{5}{b}+1\right).\left(b+1\right)\)
\(C=3.\frac{-5+b}{b}.\frac{b^2+b}{b}\)
\(C=3.\frac{\left(-5+b\right).\left(b^2+b\right)}{b^2}\)
\(C=3.\frac{-5\left(b^2+b\right)+b\left(b^2+b\right)}{b^2}\)
\(C=3.\frac{\left(-5\right)b^2+-5b+b^3+b^2}{b^2}\)
\(C=3.\frac{\left(-5.b^2+b^2\right)+\left(-5.b+b^3\right)}{b^2}\)
\(C=3.\frac{b^2\left(-5+1\right)+b^2\left(\frac{-5}{b}+b\right)}{b^2}\)
\(C=3.\frac{b^2\left(-4+-\frac{5}{b}+b\right)}{b^2}\)
Mà ab=-5\(\Rightarrow b=-\frac{5}{a}\)
\(\Rightarrow C=3.\frac{b^2\left(-4+a+b\right)}{b^2}\)
\(C=3.\left(-4+3\right)\)
\(C=3.\left(-1\right)\)
\(C=-3\)
có tới 19 người gửi rồi! họ là những TT.BẠn cũng đừng gắng công vô ích
a.
\(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Vậy giá trị lớn nhất của biểu thức trên là 0,5 khi |x - 3,5| = 0 <=> x = 3,5
b.
\(\left|1,4-x\right|\ge0\)
\(-\left|1,4-x\right|\le0\)
\(-\left|1,4-x\right|-2\le-2\)
Vậy giá trị nhỏ nhất của biểu thức trên là -2 khi |1,4 - x| = 0 <=> x = 1,4
Chúc bạn học tốt ^^
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{5}=\frac{2x}{8}=\frac{3y}{15}=\frac{2x+3y}{8+15}=\frac{46}{23}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{5}=2\Rightarrow y=10\)
Vậy \(x=8,y=10\)
a, | x - 1,7 | = 3
- x - 1,7 = 3
x = 3 + 1,7
x = 4,7
- x - 1,7 = -3
x = -3 + 1,7
x = -1,3
b , 1,6 - | x - 0,2 | = 0
| x - 0,2 | = 1,6 - 0 = 1,6
- x - 0,2 = 1,6
x = 1,6 + 0,2
x = 1,8
- x - 0,2 = -1,6
x = -1,6 + 0,2
x = -1,4
c , | 2,5 - x | = 1,3
- 2,5 - x = 1,3
x = 2,5 - 1,3
x = 1,2
- 2,5 - x = -1,3
x = 2,5 - ( -1,3 )
x = 3,8
\(a.\)
\(\left|x-1,7\right|=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-1,7=3\\x-1,7=-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3+1,7=4,7\\x=-3+1,7=-1,3\end{array}\right.\)
Vậy : \(\left[\begin{array}{nghiempt}x=4,7\\x=-1,3\end{array}\right.\)
\(b.\)
\(1,6-\left|x-0,2\right|=0\)
\(\Rightarrow\left|x-0,2\right|=1,6-0=1,6\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-0,2=1,6\\x-0,2=-1,6\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1,6+0,2=1,8\\x=-1,6+0,2=-1,4\end{array}\right.\)
Vậy : \(\left[\begin{array}{nghiempt}x=1,8\\x=-1,4\end{array}\right.\)
\(c.\)
\(\left|2,5-x\right|=1,3\)
\(\Rightarrow\left[\begin{array}{nghiempt}2,5-x=1,3\\2,5-x=-1,3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2,5-1,3=1,2\\x=2,5-\left(-1,3\right)=3,8\end{array}\right.\)
Vậy : \(\left[\begin{array}{nghiempt}x=1,2\\x=3,8\end{array}\right.\)
a) Tích của hai lũy thừa : x4 . x 12
b) Lũy thừa của x4 : (x4)4
c) Thương của hai lũy thừa x22 : x6
\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)
Có \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)
Vậy \(C=8\)
\(C=3\cdot\left(ab+a+b+1\right)\)
\(=3\left(-5+3+1\right)=3\cdot\left(-1\right)=-3\)