Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a\)) \(\left(4^2.4^3\right):2^{10}\)
\(=4^5:2^{10}\)
\(=\left(2^2\right)^5:2^{10}\)
\(=2^{10}:2^{10}\)
\(=1\)
\(b\)) \(\left(0,6\right)^5:\left(0,2\right)^6\)
\(=\left(\frac{3}{5}\right)^5:\left(\frac{1}{5}\right)^6\)
\(=\frac{3^5}{5^5}:\frac{1^6}{5^6}\)
\(=\frac{3^5}{5^5}.5^6\)
\(=\frac{3^5.5^6}{5^5}\)
\(=3^5.5\)
\(=243.5\)
\(=1215\)
\(c\)) \(\left(2^7.9^3\right):\left(6^5.8^2\right)\)
\(=\left[2^7.\left(3^2\right)^3\right]:\left[\left(2.3\right)^5.\left(2^4\right)^2\right]\)
\(=\left(2^7.3^6\right):\left[2^5.3^5.2^8\right]\)
\(=\left(2^7.3^6\right).\left(\frac{1}{2^5.3^5.2^8}\right)\)
\(=\frac{2^7.3^6.1}{\left(2^5.2^8\right).3^5}\)
\(=\frac{2^7.3^6}{2^{13}.3^5}\)
\(=\frac{3}{2^6}\)
\(=\frac{3}{64}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.5^4.4^4}{\left(5^2\right)^5.4^5}=\frac{5^8.4^4}{5^{10}.4^5}=\frac{1}{25.4}=\frac{1}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{4^5\cdot10\cdot5^6+25^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{10}\cdot2\cdot5\cdot5^6+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^8\cdot5^7\left(2^3+5^3\right)}{2^5\cdot5^4\left(2^3+5^3\right)}\\ =\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\\ =2^3\cdot5^3\\ =8\cdot125\\ =1000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{25^3.5^5}{6.5^{10}}\)
\(A=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}\)
\(A=\frac{5^6.5^5}{6.5^{10}}\)
\(A=\frac{5^{11}}{6.5^{10}}\)
\(A=\frac{5}{6}\)
(Dùng phương pháp giảm ước)
\(=\frac{\left(5^2\right)^3.5^5}{6.5^{10}}\)
\(=\frac{5^6.5^5}{6.5^{10}}\)
\(=\frac{5^{11}}{6.5^{10}}\)
\(=\frac{5}{6}\)
VẬY \(A=\frac{5}{6}\)
A=25
A=25