Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
a, Với \(x=\frac{1}{2}\)thày vào A tìm đc \(A=\frac{11}{2}\)
b, Ta có
\(x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Với \(x=1\)thày vào A tìm đc \(A=6\)
Với \(x=-1\)thày vào A tìm đc \(A=10\)
c, Ta có
\(x^2=3x\)
\(\Rightarrow x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\)thày vào A tìm đc \(A=5\)
Với \(x=3\)thày vào A tìm đc \(A=-22\)
Thay x = 1/2 vào A ta được
A = \(-2.\left(\frac{1}{2}\right)^3+3.\left(\frac{1}{2}\right)^2+5=-\frac{1}{4}+\frac{3}{4}+5=\frac{11}{2}\)
Với x2 - 1 = 0
=> x2 = 1
=> x = \(\pm\)1
Khi x = 1 => A = -2x3 + 3x2 + 5
= -2.13 + 3.12 + 5 = -2 + 3 + 5 = 6
Khi x = -1 => A = -2x3 + 3x2 + 5
= -2.(-1)3 + 3.(-1)2 + 5 = 2 + 3 + 5 = 10
Với x2 = 3x
=> x2 - 3x = 0
=> x(x - 3) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với x = 0 => A = -2.03 + 3.02 + 5 = 5
Với x = 3 => A = -2.33 + 3.32 + 5 = -22
bài 1 :
a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5
b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2
Câu 1 : Bài giải
a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)
\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)
b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN
Mà \(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)
\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)
Câu 2 : Bài giải
a, Do \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)
Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)
b, Do \(4-\left|5x+3\right|\le4\text{ }\)
Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)
\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)
c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)
\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
Ta có : \(\frac{x}{y}=\frac{1}{2}\)hay \(\frac{x}{1}=\frac{y}{2}\)
Đặt \(\frac{x}{1}=\frac{y}{2}=k\)=> \(\hept{\begin{cases}x=k\\y=2k\end{cases}}\)
Do đó ta thay x,y vào biểu thức trên ta có :
\(M=\frac{5x-3y}{2x+y}=\frac{5\cdot k-3\cdot2k}{2\cdot k+2k}=\frac{5k-6k}{4k}=\frac{-1k}{4k}=-\frac{1}{4}\)
Vậy \(M=-\frac{1}{4}\)
a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)
\(=2x+1\)
b,* Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)
Vậy nếu x = 0 thì biểu thức nhận giá trị 1
* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)
Vậy nếu x = -1 thì biểu thức nhận giá trị là -1
* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)
Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2
c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)
ta có
\(N=\frac{5x-3y}{2x+y}=\frac{\frac{5x}{y}-\frac{3y}{y}}{\frac{2x}{y}+\frac{y}{y}}=\frac{\frac{5}{2}-3}{\frac{2}{2}+1}=-\frac{1}{4}\)
\(\frac{x}{y}=\frac{1}{2}\Rightarrow\hept{\begin{cases}2x=y\\5x=\frac{5}{2}y\end{cases}}\)
\(N=\frac{5x-3y}{2x+y}=\frac{\frac{5}{2}y-3y}{y+y}=\frac{-\frac{1}{2}y}{2y}=-\frac{1}{4}\)