Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Ax3=(1/3 + 1/9 + 1/27 + 1/81 + 1/243)x3
Ax3=1/3 x 3 + 1/9 x 3 + 1/27 x 3 + 1/81 x 3 + 1/243 x 3
Ax3=1+1/3+1/9+1/27+1/81
Ax3-A=(1+1/3+1/9+1/27+1/81)-(1/3+1/9+1/27+1/81+1/243)
Ax(3-1)=1-1/243
Ax2=243/243-1/243
Ax2= 242/243
A = 242/243:2
A = 242/243 x 1/2
A = 121/243
Vậy A= 121/243
Li-ke cho mik nhé!
1/ Đặt Biểu thức cần tính là A
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
\(A=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+\frac{5-4}{4x5}+\frac{6-5}{5x6}+\frac{7-6}{6x7}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}=1-\frac{1}{7}=\frac{6}{7}\)
2/
Phân số chỉ lượng nước 2 vòi cùng chảy trong 1 giờ là
1:4=1/4 bể
Phân số chỉ lượng nước vòi 1 chảy trong 1 giờ là
1:5=1/5 bể
Phân số chỉ lượng nước vòi 2 chảy trong 1 giờ là
1/4-1/5=1/20 bể
Thời gian vòi hai chảy một mình đầy bể là
1:1/20=20 giờ
3/
\(3xA=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(2xA=3xA-A=1-\frac{1}{243}=\frac{242}{243}\Rightarrow A=\frac{121}{243}\)
4/ x=2
x = 2
Đúng 100% luôn . Ok meo nhé . hi - hi- hi . ha - ha - ha . ngốc thế .
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(3A-A=\left(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(2A=3-\dfrac{1}{729}=\dfrac{2186}{729}\)
\(A=\dfrac{2186}{729}\div2=\dfrac{1093}{729}\)
A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
Lời giải:
Đặt $A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}$
$3\times A=3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}$
$3\times A-A=3-\frac{1}{2187}$
$2\times A=3-\frac{1}{2187}=\frac{6560}{2187}$
$A=\frac{6560}{2187}:2=\frac{3280}{2187}$
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{3}{9}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{4}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{12}{27}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{13}{27}+\frac{1}{81}+\frac{1}{243}=\frac{39}{81}+\frac{1}{81}+\frac{1}{243}=\frac{40}{81}+\frac{1}{243}\)
\(=\frac{120}{243}+\frac{1}{243}=\frac{121}{243}\)
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3\times A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)
\(2\times A=1-\frac{1}{729}=\frac{728}{729}\)
\(A=\frac{364}{729}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
Ta có:\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
Xét\(\frac{1}{3}A=\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Leftrightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{729}\)
\(\Leftrightarrow\frac{2}{3}A=\frac{243-1}{729}\Leftrightarrow A=\frac{3}{2}\times\frac{242}{729}=\frac{121}{243}\)
Phải là : A=1/3+1/9+1/27+1/81+1/243 ta có: 3A=1+1/3+1/9+1/27+1/81 3A-A=(1+1/3+1/9+1/27+1/81)-(1/3+1/9+1/27+1/81+1/243)=1-1/243 2A=242/243 A=242/243:2=121/243