Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\frac{6}{8}+\frac{6}{56}+\frac{6}{140}+...+\frac{6}{1100}+\frac{6}{1400}\)
\(\Rightarrow B=\frac{3}{4}+\frac{3}{28}+\frac{3}{140}+...+\frac{3}{550}+\frac{3}{700}\)
\(\Rightarrow B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{22.25}+\frac{3}{25.28}\)
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow B=1-\frac{1}{28}\)
\(\Rightarrow B=\frac{28}{28}-\frac{1}{28}=\frac{27}{28}\)
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
\(B=\frac{6}{8}+\frac{6}{56}+\frac{6}{140}+....+\frac{6}{1100}+\frac{6}{1400}\)
Rút gọn các phân số số ; ta được :
\(B=\frac{3}{4}+\frac{3}{56}+\frac{3}{70}+....+\frac{3}{550}+\frac{3}{700}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{22.25}+\frac{3}{25.28}\)
\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{22}-\frac{1}{25}+\frac{1}{25}-\frac{1}{28}\)
\(B=1-\frac{1}{28}=\frac{27}{28}\)
Vậy biểu thức \(B=\frac{27}{28}\)
\(\frac{-10}{56}+\frac{-10}{140}+\frac{-10}{260}+...+\frac{-10}{1400}=\frac{-10}{4.7.2}+\frac{-10}{7.10.2}+...+\frac{-10}{25.28.2}\)rồi bây giờ ra sẽ rút 1/2 ra ngoài nhé đặt cái này vào trong ngoặc rồi tính sau đó nhân với 1/2 rồi so sánh với -1/3 nha mình sẽ giải cho cái tách 1/2 còn lại bạn tự làm nhé
\(A=\frac{1}{2}\left(\frac{-10}{4.7}+\frac{-10}{7.10}+...+\frac{-10}{25.28}\right)\)mẫu đã có quy luật bạn cứ theo quy luật tính trong ngoặc rồi nhân với 1/2 nha
\(\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(8^2-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-64\right)\)
\(=\left(1^1+2^2+3^3+4^4+2022^{2022}\right).0\)
\(=0\)
\(A=\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{140}+...+\dfrac{3}{550}+\dfrac{3}{700}\)
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{22.25}+\dfrac{3}{25.28}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{22}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{28}\)
\(A=1-\dfrac{1}{28}\)
\(A=\dfrac{28}{28}-\dfrac{1}{28}=\dfrac{27}{28}\)
ta có A=\(\dfrac{6}{8}\)+\(\dfrac{6}{56}\)+\(\dfrac{6}{140}\)+...+\(\dfrac{6}{1100}\)+\(\dfrac{6}{1400}\)
=\(\dfrac{3}{4}\)+\(\dfrac{3}{28}\)+\(\dfrac{3}{70}\)+...+\(\dfrac{3}{550}\)+\(\dfrac{3}{700}\)
=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{22.25}\)+\(\dfrac{3}{25.28}\)
=1-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{10}\)+...+\(\dfrac{1}{22}\)-\(\dfrac{1}{25}\)+\(\dfrac{1}{25}\)-\(\dfrac{1}{28}\)
=1-\(\dfrac{1}{28}\)
=\(\dfrac{27}{28}\)
Vậy A=\(\dfrac{27}{28}\)
Ta có:
A =6/8+6/56+6/140+...+6/1100+6/1400
⇒A=3/4+3/28+3/70+...+3/550+3/700
⇒A=3/1.4+3/4.7+3/7.10+...+3/22.25+3/25.28
⇒A=1−1/4+1/4−1/7+1/7−1/10+...+1/22−1/25+1/25−1/28
⇒A=1−1/28
⇒A=1-1/38
\(\frac{8}{56}+\frac{8}{140}+\frac{8}{260}+...+\frac{8}{1400}=\frac{4}{28}+\frac{4}{70}+\frac{4}{130}+...+\frac{4}{700}\)
\(=\frac{4}{4.7}+\frac{4}{7.10}+\frac{4}{10.13}+...+\frac{4}{25.28}\)
\(=\frac{4}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(=\frac{4}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{4}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{4}{3}.\frac{3}{14}=\frac{2}{7}\)