\(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{^{2^3}}-...-\frac{5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

\(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-......-\frac{512}{2^{10}}\)

\(=512.\left(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-....-\frac{1}{2^{10}}\right)\)

Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-....-\frac{1}{2^{10}}\)

\(=>2A=2-1-\frac{1}{2}-\frac{1}{2^2}-....-\frac{1}{2^9}\)

\(=>2A-A=\left(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\right)-\left(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-....-\frac{1}{2^{10}}\right)\)

\(=>A=2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}-1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}\)

\(=>A=2-1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)

\(=>512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}=512.\frac{1}{2^{10}}=\frac{512}{2^{10}}=\frac{1}{2}\)

3 tháng 7 2016

\(=512\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(=512\left(1-\frac{1}{2^{10}}\right)=512.\frac{1023}{1024}=\frac{1023}{512}\)

2 tháng 7 2016

\(M=512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}\)

\(M=512-512.\left(\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)

Đặt\(S=\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)

=> \(\frac{1}{2}S=\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{11}}\)

=> \(\frac{1}{2}S-S=-\frac{1}{2}S=\frac{1}{2^{11}}-\frac{1}{2}\)

=> \(S=\left(\frac{1}{2^{11}}-\frac{1}{2}\right):-\frac{1}{2}\)

9 tháng 7 2015

M = 512 - 512/2 - .... - 512/2^10

   = 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10

   = 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2

2M = 2^10 - 2^9 - 2^8 - .... - 1 

2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9  + 2^8 + 2^7 +... +    1 + 1/2

          M   = 2^10 - 2.2^9 + 1/2

          M  = 2^10 - 2^10 + 1/2

          M  = 1/2

19 tháng 1 2018

M = 512 - 512/2 - .... - 512/2^10
   = 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
   = 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1 
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9  + 2^8 + 2^7 +... +    1 + 1/2
          M   = 2^10 - 2.2^9 + 1/2
          M  = 2^10 - 2^10 + 1/2
          M  = 1/2

17 tháng 11 2018

512-\(\frac{512}{2}\)-\(\frac{512}{2^2}\)-\(\frac{512}{2^3}\)-....-\(\frac{512}{2^{10}}\)

=512-256-\(\frac{2^9}{2^2}\)-\(\frac{2^9}{2^3}\)-\(\frac{2^9}{2^4}\)-\(\frac{2^9}{2^5}\)-\(\frac{2^9}{2^6}\)-\(\frac{2^9}{2^7}\)-\(\frac{2^9}{2^8}\)-\(\frac{2^9}{2^9}\)-\(\frac{2^9}{2^{10}}\)

=512-256-128-64-32-16-8-4-2-\(\frac{1}{2}\)

=\(\frac{3}{2}\)

17 tháng 11 2018

Đặt \(Q=512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}\)

 \(=512-512\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

Đặt  A là tên biểu thức trong ngoặc ta cs:

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)

Thay A vào Q ta được:

\(Q=512-512\left(1-\frac{1}{2^{10}}\right)=512-512+\frac{512}{2^{10}}=\frac{2^9}{2^{10}}=\frac{1}{2}\)

11 tháng 9 2016

\(\Rightarrow\frac{M}{512}=1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\)

\(\Rightarrow2.\left(\frac{M}{512}\right)=2-1-\frac{1}{2}-.....-\frac{1}{2^9}\)

\(\Rightarrow2.\left(\frac{M}{512}\right)-\frac{M}{512}=\left(2-1-\frac{1}{2}-.....-\frac{1}{2^9}\right)-\left(1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\right)\)

\(\Rightarrow\frac{M}{512}=-\frac{1}{2^{10}}\)

\(\Rightarrow M=-\frac{1}{2}\)

 

18 tháng 3 2020

cau la ai vay minh ten la huy lop 4a

18 tháng 3 2020

Phùng Nguyễn Quốc Huy Liên quan ko bạn êi, ko trả lời thì thuôi, vào giới thiệu lmj?

29 tháng 9 2015

M= 512 - \(\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)

=> 2.M = 1024  - 512 -  \(\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^9}\)

=> 2.M - M = 1024 - 512 - 512 + \(\frac{512}{2^{10}}\)

=> M = \(\frac{512}{2^{10}}=\frac{2^9}{2^{10}}=\frac{1}{2}\)

29 tháng 9 2015

M = \(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-.....-\frac{512}{2^{10}}\)

M = \(512-512.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{11}}\)

A = 2A - A = \(1-\frac{1}{2^{10}}\)

=> M = \(512-512.\left(1-\frac{1}{2^{10}}\right)\)

=> M = 512.\(\left(1-1+\frac{1}{2^{10}}\right)\)

=> M = \(512.\frac{1}{2^{10}}\)

=> M = \(\frac{512}{2^{10}}\)

15 tháng 10 2018

\(\text{M = 512 - 512/2 - .... - 512/2^10 = 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10 = 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2 2M = 2^10 - 2^9 - 2^8 - .... - 1 2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2 M = 2^10 - 2.2^9 + 1/2 M = 2^10 - 2^10 + 1/2}\)
      \(\text{ M =}\) \(\frac{1}{2}\)