\(a-b+\frac{1}{29}\) biết \(a,b,c>0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

a3 + b3 + c3 = 3abc

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Vì a,b,c > 0 ⇒ a + b + c > 0 ⇒ a + b + c = 0 không xảy ra

Xét a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

Dấu "=" xảy ra khi a = b = c

Khi đó : a - b + 1/29 = a - a + 1/29 = 1/29

DD
15 tháng 1 2021

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vì \(a,b,c>0\)nên \(a+b+c>0\)suy ra \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

27 tháng 9 2016

không hỉu

29 tháng 9 2016

chỉnh lại rồi nhé

8 tháng 8 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

đến đây ez tự làm nốt nhé, ko ra ib mk

4 tháng 4 2020

Thay a3+b3=(a+b)3-3ab(a+b) vào giả thiết ta có:

(a+b)3-3ab(a+b)+c3-3abc=0

<=> [(a+b)+c].\(\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)-3ab(a+b+c)=0

<=> (a+b+c) (a2+b2+c2-ab-bc+c2-3ab)=0

<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

  • Nếu a+b+c=0

\(\Rightarrow A=\frac{b+a}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}\Rightarrow A=-1\)

  • Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> a=b=c

Khi đó \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

9 tháng 6 2017

từ giả thiết 1 suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

lại có 1 + a2 \(\ge\)2a nên \(\frac{1}{1+a^2}\le\frac{1}{2a}\)

do đó \(\frac{3}{2}=\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

dấu bằng xảy ra khi a = b = c = 1.

vậy S = a + b + c = 3.

8 tháng 8 2017

Từng ý nhé !!!

\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(\frac{1}{abc}.3abc=3\)

8 tháng 8 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)

\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)

\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)

\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)

Xét \(a=b=c\) ta có :

\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)