K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!

NV
25 tháng 12 2020

\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)

\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)

\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)

6 tháng 9 2020

Đặt \(x+6=a;y-7=b;z-9=c\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=0\end{cases}}\)

Bạn hiểu chưa :))

6 tháng 9 2020

Đặt x+6=a, y-7=b, z-9=c

Vì x+y+z=10 nên a+b+c=0

Xét \(a^3+b^3+c^3=0\Leftrightarrow a^3+b^3+c^3-3abc=-3abc\)(1)

Ta có đẳng thức (bạn nên học đẳng thức này nhé vì nó cực kì thông dụng trong toán nâng cao):

\(a^3+b^3+c^3-3abc=\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}\)(2)

Vì a+b+c=0 nên từ (1), (2) suy ra \(\hept{\begin{cases}-3abc=0\\a+b+c=0\end{cases}\Rightarrow a=b=c=0}\)

Vậy M = a2019+b2019+c2019=0

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

1 tháng 11 2020

mình không hiểu ạ

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:

ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$

$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$

$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$

Vì $a,b,c\neq 0$ nên $m=n=p=0$

$\Rightarrow x=y=z=0$

Khi đó:

$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$

$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$

$\Rightarrow$ đpcm

 

23 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)

\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)

Vì (1) luôn không âm mà a,b,c≠0

nên x=y=z=0

\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)

mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)

nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)