Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}\)
\(=\left(\frac{-3}{7}+\frac{3}{7}\right)-\left(\frac{15}{26}+\frac{2}{13}\right)\)
\(=0-\frac{19}{26}\)
\(=-\frac{19}{26}\)
c)\(=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)
\(=\frac{-11}{23}.2-\frac{1}{23}\)
\(=\frac{-22}{23}-\frac{1}{23}\)
\(=-1\)
a) \(\left(-0,75+\frac{1}{2}\right):\frac{4}{3}\)
\(=\frac{-1}{4}:\frac{4}{3}\)
\(=\frac{-3}{16}\)
b) \(\frac{5}{9}.\frac{2}{7}+\frac{5}{9}.\frac{5}{7}-\frac{8}{3}\)
\(=\frac{5}{9}.\left(\frac{2}{7}+\frac{5}{7}\right)-\frac{8}{3}\)
\(=\frac{5}{9}.1-\frac{8}{3}\)
\(=\frac{-19}{9}\)
c) \(7,5.1\frac{3}{4}-6\frac{2}{5}\)
\(=\frac{15}{2}.\frac{7}{4}-\frac{32}{5}\)
\(=\frac{269}{40}\)
a, 3 \(\frac{14}{19}\)+ \(\frac{13}{17}\)+ \(\frac{35}{43}\)+ 6\(\frac{5}{19}\)+ \(\frac{8}{43}\)= \(\left(3\frac{14}{19}+6\frac{5}{19}\right)+\left(\frac{35}{43}+\frac{8}{43}\right)+\frac{13}{17}=\)\(9+1+\frac{13}{17}=8+\frac{13}{17}=8\frac{13}{17}\)
b, \(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+1\frac{5}{7}\)\(=\frac{-5}{7}\left(\frac{2}{11}+\frac{9}{11}\right)+1\frac{5}{7}\)\(=\frac{-5}{7}.1+1\frac{5}{7}\)\(=\frac{-5}{7}+\frac{12}{7}=\frac{7}{7}=1\)
Chúc bn học tốt
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\frac{5}{19}+\frac{8}{43}\)
\(=\left(3\frac{14}{19}+6\frac{5}{19}\right)+\left(\frac{35}{43}+\frac{8}{43}\right)+\frac{13}{17}\)
\(=10+1+\frac{13}{17}=11+\frac{13}{17}=11\frac{13}{17}\)
Bài 1:
a) Ta có: \(\frac{3}{5}+\frac{4}{15}\)
\(=\frac{9}{15}+\frac{4}{15}\)
\(=\frac{13}{15}\)
b) Ta có: \(\frac{-3}{5}+\frac{5}{7}\)
\(=\frac{-21}{35}+\frac{25}{35}=\frac{4}{35}\)
c) Ta có: \(\frac{5}{6}:\frac{-7}{12}\)
\(=\frac{5}{6}\cdot\frac{-12}{7}=\frac{-60}{42}=\frac{-10}{7}\)
d) Ta có: \(\frac{-21}{24}:\frac{-14}{8}\)
\(=\frac{-7}{8}:\frac{-7}{4}\)
\(=\frac{-7}{8}\cdot\frac{4}{-7}=\frac{4}{8}=\frac{1}{2}\)
e) Ta có: \(\frac{-3}{5}\cdot\frac{5}{7}+\frac{-3}{5}\cdot\frac{3}{7}+\frac{-3}{5}\cdot\frac{6}{7}\)
\(=\frac{-3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)\)
\(=-\frac{3}{5}\cdot2=\frac{-6}{5}\)
f) Ta có: \(\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{4}{3}\)
\(=\frac{1}{3}\cdot\frac{4}{5}+\frac{1}{3}\cdot\frac{6}{5}-\frac{1}{3}\cdot4\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}-4\right)\)
\(=\frac{1}{3}\cdot\left(-2\right)=\frac{-2}{3}\)
g) Ta có: \(\frac{4}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{19}+\frac{5}{7}\)
\(=\frac{4}{19}\cdot\frac{-3}{7}+\frac{5}{19}\cdot\frac{-3}{7}+\frac{-3}{7}\cdot\frac{5}{-3}\)
\(=-\frac{3}{7}\left(\frac{4}{19}+\frac{5}{19}+\frac{-5}{3}\right)\)
\(=\frac{-3}{7}\cdot\left(\frac{27}{57}+\frac{-95}{57}\right)\)
\(=\frac{-3}{7}\cdot\frac{-68}{57}=\frac{68}{133}\)
h) Ta có: \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}\)
\(=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{5}{13}\right)\)
\(=\frac{5}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+....+\frac{71}{72}+\frac{89}{90}\right)\)
Đặt \(B=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{71}{72}+\frac{89}{90}\)
\(B=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)
\(B=1+1+1+1+...+1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{72}+\frac{1}{90}\right)\)
\(B=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(B=9-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=9-\left(\frac{1}{1}-\frac{1}{10}\right)=9-\frac{9}{10}=\frac{81}{10}=8,1\)
Ta có \(A=10.B=10.B=10.8,1=81\)
Vậy \(A=81\)
b = \(\frac{13}{16}\)
c = \(\frac{1}{9}\)
k cho tôi ,tôi gải đầy đủ cho
b)(\(\frac{9}{24}-\frac{6}{24}+\frac{10}{24}\))\(:\frac{2}{3}\)\(=\frac{13}{24}:\frac{2}{3}=\frac{13}{24}x\frac{3}{2}=\frac{39}{48}=\frac{13}{16}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=\left(1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9+\left(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+...+\frac{1}{9\cdot10}\right)\)
\(A=9+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9+\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=8\frac{1}{10}\)
\(\frac{6}{9}+\frac{5}{8}.\frac{6}{114}:\frac{55}{1145}\)
\(=\frac{6}{9}+\frac{5}{152}:\frac{55}{1145}\)
\(=\frac{6}{9}+\frac{1145}{1672}\)
\(=\frac{6779}{5016}\)
\(\frac{6}{9}+\frac{5}{8}.\frac{6}{114}:\frac{55}{1145}\)
\(=\frac{6}{9}+\frac{5}{152}.\frac{1145}{55}\)
\(=\frac{6}{9}+\frac{1145}{1672}\)
\(=\frac{6779}{5016}\)